메뉴 건너뛰기




Volumn 16, Issue 12, 2015, Pages

Multiscale modeling of mucosal immune responses

Author keywords

Agent based modeling; Computational biology; Multiscale modeling; Systems biology

Indexed keywords

AUTONOMOUS AGENTS; BIOINFORMATICS; CELL SIGNALING; CELLS; COMPUTATIONAL METHODS; CYTOLOGY; HISTOLOGY; IMMUNE SYSTEM; OBJECT ORIENTED PROGRAMMING; ORDINARY DIFFERENTIAL EQUATIONS; PATHOLOGY; SOFTWARE AGENTS; STOCHASTIC SYSTEMS; T-CELLS; TISSUE;

EID: 84961566740     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-16-S12-S2     Document Type: Article
Times cited : (30)

References (64)
  • 1
    • 33845368513 scopus 로고    scopus 로고
    • COPASI--a COmplex PAthway SImulator
    • Hoops S, et al: COPASI--a COmplex PAthway SImulator. Bioinformatics. 2006, 22 (24): 3067-74. 10.1093/bioinformatics/btl485.
    • (2006) Bioinformatics , vol.22 , Issue.24 , pp. 3067-3074
    • Hoops, S.1
  • 2
    • 0035478586 scopus 로고    scopus 로고
    • The Virtual Cell: a software environment for computational cell biology
    • Loew LM, Schaff JC: The Virtual Cell: a software environment for computational cell biology. Trends Biotechnol. 2001, 19 (10): 401-6. 10.1016/S0167-7799(01)01740-1.
    • (2001) Trends Biotechnol , vol.19 , Issue.10 , pp. 401-406
    • Loew, L.M.1    Schaff, J.C.2
  • 4
    • 38049136890 scopus 로고    scopus 로고
    • The Basic Immune Simulator: an agent-based model to study the interactions between innate and adaptive immunity
    • Folcik VA, An GC, Orosz CG: The Basic Immune Simulator: an agent-based model to study the interactions between innate and adaptive immunity. Theor Biol Med Model. 2007, 4: 39-10.1186/1742-4682-4-39.
    • (2007) Theor Biol Med Model , vol.4 , pp. 39
    • Folcik, V.A.1    An, G.C.2    Orosz, C.G.3
  • 5
    • 34250756654 scopus 로고    scopus 로고
    • NetLogo, a multi-agent simulation environment
    • Sklar E: NetLogo, a multi-agent simulation environment. Artif Life. 2007, 13 (3): 303-11. 10.1162/artl.2007.13.3.303.
    • (2007) Artif Life , vol.13 , Issue.3 , pp. 303-311
    • Sklar, E.1
  • 8
    • 84866510577 scopus 로고    scopus 로고
    • ENteric Immunity SImulator: A tool for in silico study of gastroenteric infections
    • Wendelsdorf K, et al: ENteric Immunity SImulator: A tool for in silico study of gastroenteric infections. IEEE Transactions on NanoBioScience. 2012, 11: 273-288.
    • (2012) IEEE Transactions on NanoBioScience , vol.11 , pp. 273-288
    • Wendelsdorf, K.1
  • 11
    • 0020972784 scopus 로고
    • Mathematical modeling in immunology
    • DeLisi C: Mathematical modeling in immunology. Annu Rev Biophys Bioeng. 1983, 12: 117-38. 10.1146/annurev.bb.12.060183.001001.
    • (1983) Annu Rev Biophys Bioeng , vol.12 , pp. 117-138
    • DeLisi, C.1
  • 12
    • 0037079054 scopus 로고    scopus 로고
    • Computational systems biology
    • Kitano H: Computational systems biology. Nature. 2002, 420 (6912): 206-10. 10.1038/nature01254.
    • (2002) Nature , vol.420 , Issue.6912 , pp. 206-210
    • Kitano, H.1
  • 13
    • 0037342537 scopus 로고    scopus 로고
    • The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models
    • Hucka M, et al: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics. 2003, 19 (4): 524-31. 10.1093/bioinformatics/btg015.
    • (2003) Bioinformatics , vol.19 , Issue.4 , pp. 524-531
    • Hucka, M.1
  • 14
    • 85012427182 scopus 로고
    • Whither computational biology
    • Davison DB, et al: Whither computational biology. J Comput Biol. 1994, 1 (1): 1-2.
    • (1994) J Comput Biol , vol.1 , Issue.1 , pp. 1-2
    • Davison, D.B.1
  • 15
    • 0036607144 scopus 로고    scopus 로고
    • New computational approaches for analysis of cis-regulatory networks
    • Brown CT, et al: New computational approaches for analysis of cis-regulatory networks. Dev Biol. 2002, 246 (1): 86-102. 10.1006/dbio.2002.0619.
    • (2002) Dev Biol , vol.246 , Issue.1 , pp. 86-102
    • Brown, C.T.1
  • 16
    • 0032549745 scopus 로고    scopus 로고
    • Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene
    • Yuh CH, Bolouri H, Davidson EH: Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science. 1998, 279 (5358): 1896-902. 10.1126/science.279.5358.1896.
    • (1998) Science , vol.279 , Issue.5358 , pp. 1896-1902
    • Yuh, C.H.1    Bolouri, H.2    Davidson, E.H.3
  • 17
    • 84926059438 scopus 로고    scopus 로고
    • Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling
    • Ye H, et al: Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling. Proc Natl Acad Sci USA. 2015, 112 (13): E1569-76. 10.1073/pnas.1417063112.
    • (2015) Proc Natl Acad Sci USA , vol.112 , Issue.13 , pp. E1569-E1576
    • Ye, H.1
  • 18
    • 0037203880 scopus 로고    scopus 로고
    • Inspired by immunity
    • Klarreich E: Inspired by immunity. Nature. 2002, 415 (6871): 468-70. 10.1038/415468a.
    • (2002) Nature , vol.415 , Issue.6871 , pp. 468-470
    • Klarreich, E.1
  • 20
    • 84876915404 scopus 로고    scopus 로고
    • Systems modeling of molecular mechanisms controlling cytokine-driven CD4+ T cell differentiation and phenotype plasticity
    • Carbo A, et al: Systems modeling of molecular mechanisms controlling cytokine-driven CD4+ T cell differentiation and phenotype plasticity. PLoS Comput Biol. 2013, 9 (4): e1003027-10.1371/journal.pcbi.1003027.
    • (2013) PLoS Comput Biol , vol.9 , Issue.4 , pp. e1003027
    • Carbo, A.1
  • 21
    • 84883495378 scopus 로고    scopus 로고
    • Predictive computational modeling of the mucosal immune responses during Helicobacter pylori infection
    • Carbo A, et al: Predictive computational modeling of the mucosal immune responses during Helicobacter pylori infection. PLoS One. 2013, 8 (9): e73365-10.1371/journal.pone.0073365.
    • (2013) PLoS One , vol.8 , Issue.9 , pp. e73365
    • Carbo, A.1
  • 22
    • 27744570841 scopus 로고    scopus 로고
    • Pattern-oriented modeling of agent-based complex systems: lessons from ecology
    • Grimm V, et al: Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science. 2005, 310 (5750): 987-91. 10.1126/science.1116681.
    • (2005) Science , vol.310 , Issue.5750 , pp. 987-991
    • Grimm, V.1
  • 23
    • 0001918317 scopus 로고    scopus 로고
    • Mathematical analysis of hiv-1 dyamics in vivo
    • Perelson A, Nelson P: Mathematical analysis of hiv-1 dyamics in vivo. SIAM review. 1999, 41 (1): 3-44. 10.1137/S0036144598335107.
    • (1999) SIAM review , vol.41 , Issue.1 , pp. 3-44
    • Perelson, A.1    Nelson, P.2
  • 24
    • 70349454512 scopus 로고    scopus 로고
    • Tutorial on agent-based modeling and simulation
    • Macal C, North M: Tutorial on agent-based modeling and simulation. Journal of Simulation. 2010, 8 (2): 177-183.
    • (2010) Journal of Simulation , vol.8 , Issue.2 , pp. 177-183
    • Macal, C.1    North, M.2
  • 25
    • 0038702140 scopus 로고    scopus 로고
    • Agent-based modeling vs. equation-based modeling: A case study and users ' guide
    • Parunak HV, Savit R, Riolo RL: Agent-based modeling vs. equation-based modeling: A case study and users ' guide. Multi-Agent Systems and Agent-Based Simulation. 1998, 1534: 10-25. 10.1007/10692956_2.
    • (1998) Multi-Agent Systems and Agent-Based Simulation , vol.1534 , pp. 10-25
    • Parunak, H.V.1    Savit, R.2    Riolo, R.L.3
  • 26
    • 33947507091 scopus 로고    scopus 로고
    • Computational systems biology in drug discovery and development: methods and applications
    • Materi W, Wishart DS: Computational systems biology in drug discovery and development: methods and applications. Drug Discov Today. 2007, 12 (7-8): 295-303. 10.1016/j.drudis.2007.02.013.
    • (2007) Drug Discov Today , vol.12 , Issue.7-8 , pp. 295-303
    • Materi, W.1    Wishart, D.S.2
  • 27
    • 84886745848 scopus 로고    scopus 로고
    • Merging concepts - coupling an agent-based model of hematopoietic stem cells with an ODE model of granulopoiesis
    • Krinner A, et al: Merging concepts - coupling an agent-based model of hematopoietic stem cells with an ODE model of granulopoiesis. BMC Syst Biol. 2013, 7: 117-10.1186/1752-0509-7-117.
    • (2013) BMC Syst Biol , vol.7 , pp. 117
    • Krinner, A.1
  • 28
    • 84918767987 scopus 로고    scopus 로고
    • A multiscale model of interleukin-6-mediated immune regulation in Crohn's disease and its application in drug discovery and development
    • Dwivedi G, et al: A multiscale model of interleukin-6-mediated immune regulation in Crohn's disease and its application in drug discovery and development. CPT Pharmacometrics Syst Pharmacol. 2014, 3: e89-10.1038/psp.2013.64.
    • (2014) CPT Pharmacometrics Syst Pharmacol , vol.3 , pp. e89
    • Dwivedi, G.1
  • 29
    • 85085219228 scopus 로고    scopus 로고
    • Multiscale Computational Modeling in Vascular Biology: From Molecular Mechanisms to Tissue-Level Structure and Function.
    • Edited by: G. Amit. Springer Berlin Heidelberg
    • Hayenga H, et al: Multiscale Computational Modeling in Vascular Biology: From Molecular Mechanisms to Tissue-Level Structure and Function. Multiscale Computer Modeling in Biomechanics and Biomedical Engineering. Edited by: G. Amit. 2013, Springer Berlin Heidelberg, 209-240. 10.1007/8415_2012_147.
    • (2013) Multiscale Computer Modeling in Biomechanics and Biomedical Engineering. , pp. 209-240
    • Hayenga, H.1
  • 30
    • 84946479380 scopus 로고    scopus 로고
    • Computational modeling of chemo-bio-mechanical coupling: a systems-biology approach toward wound healing
    • Buganza Tepole A, Kuhl E: Computational modeling of chemo-bio-mechanical coupling: a systems-biology approach toward wound healing. Comput Methods Biomech Biomed Engin. 2014, 1-18.
    • (2014) Comput Methods Biomech Biomed Engin , pp. 1-18
    • Buganza Tepole, A.1    Kuhl, E.2
  • 31
    • 84872511963 scopus 로고    scopus 로고
    • Bridging the scales: semantic integration of quantitative SBML in graphical multi-cellular models and simulations with EPISIM and COPASI
    • Sutterlin T, et al: Bridging the scales: semantic integration of quantitative SBML in graphical multi-cellular models and simulations with EPISIM and COPASI. Bioinformatics. 2013, 29 (2): 223-9. 10.1093/bioinformatics/bts659.
    • (2013) Bioinformatics , vol.29 , Issue.2 , pp. 223-229
    • Sutterlin, T.1
  • 32
    • 84903153748 scopus 로고    scopus 로고
    • Nutrition Research and the Impact of Computational Systems Biology
    • Mc Auley MT, et al: Nutrition Research and the Impact of Computational Systems Biology. J Comput Sci Syst Biol. 2013, 6 (5): 271-285. 10.4172/jcsb.1000122.
    • (2013) J Comput Sci Syst Biol , vol.6 , Issue.5 , pp. 271-285
    • Mc Auley, M.T.1
  • 33
    • 0034861860 scopus 로고    scopus 로고
    • Design and implementation of an immune system simulator
    • Bernaschi M, Castiglione F: Design and implementation of an immune system simulator. Comput Biol Med. 2001, 31 (5): 303-31. 10.1016/S0010-4825(01)00011-7.
    • (2001) Comput Biol Med , vol.31 , Issue.5 , pp. 303-331
    • Bernaschi, M.1    Castiglione, F.2
  • 34
    • 0036640183 scopus 로고    scopus 로고
    • IMMSIM, a flexible model for in machina experiments on immune system responses
    • Puzone R, et al: IMMSIM, a flexible model for in machina experiments on immune system responses. Future Generation Computer Systems. 2002, 18 (7): 961-972. 10.1016/S0167-739X(02)00075-4.
    • (2002) Future Generation Computer Systems , vol.18 , Issue.7 , pp. 961-972
    • Puzone, R.1
  • 35
    • 33947191941 scopus 로고    scopus 로고
    • Cellular automata-based modeling program: synthetic immune system
    • Mata J, Cohn M: Cellular automata-based modeling program: synthetic immune system. Immunol Rev. 2007, 216: 198-212.
    • (2007) Immunol Rev , vol.216 , pp. 198-212
    • Mata, J.1    Cohn, M.2
  • 36
    • 79551555393 scopus 로고    scopus 로고
    • Efficient modeling, simulation and coarse-graining of biological complexity with NFsim
    • Sneddon MW, Faeder JR, Emonet T: Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat Methods. 2011, 8 (2): 177-83. 10.1038/nmeth.1546.
    • (2011) Nat Methods , vol.8 , Issue.2 , pp. 177-183
    • Sneddon, M.W.1    Faeder, J.R.2    Emonet, T.3
  • 37
    • 47949098283 scopus 로고    scopus 로고
    • The lymph node B cell immune response: Dynamic analysis in-silico
    • Swerdlin N, Cohen IR, Harel D: The lymph node B cell immune response: Dynamic analysis in-silico. Proceedings of the Ieee. 2008, 96 (8): 1421-1443.
    • (2008) Proceedings of the Ieee , vol.96 , Issue.8 , pp. 1421-1443
    • Swerdlin, N.1    Cohen, I.R.2    Harel, D.3
  • 38
    • 84944222777 scopus 로고    scopus 로고
    • Rhapsody: A Complete Life-Cycle Model-Based Development System.
    • Edited by: M. Butler, L. Petre, and K. Sere., Springer Berlin Heidelberg
    • Gery E, Harel H, Palachi E: Rhapsody: A Complete Life-Cycle Model-Based Development System. Integrated Formal Methods. Edited by: M. Butler, L. Petre, and K. Sere. 2002, Springer Berlin Heidelberg, 1-10. 10.1007/3-540-47884-1_1.
    • (2002) Integrated Formal Methods. , pp. 1-10
    • Gery, E.1    Harel, H.2    Palachi, E.3
  • 39
    • 34547724111 scopus 로고    scopus 로고
    • Agent-based Simulation Platforms: Review and Development Recommendations
    • Railsback S, Lytinen S, Jackson S: Agent-based Simulation Platforms: Review and Development Recommendations. Simulation. 2006, 82 (9): 609-623. 10.1177/0037549706073695.
    • (2006) Simulation , vol.82 , Issue.9 , pp. 609-623
    • Railsback, S.1    Lytinen, S.2    Jackson, S.3
  • 40
    • 84961618578 scopus 로고    scopus 로고
    • Swarm
    • Swarm: Available from: http://www.swarm.org
  • 42
    • 33646884848 scopus 로고    scopus 로고
    • SBMLToolbox: an SBML toolbox for MATLAB users
    • Keating SM, et al: SBMLToolbox: an SBML toolbox for MATLAB users. Bioinformatics. 2006, 22 (10): 1275-1277. 10.1093/bioinformatics/btl111.
    • (2006) Bioinformatics , vol.22 , Issue.10 , pp. 1275-1277
    • Keating, S.M.1
  • 45
    • 33847626655 scopus 로고    scopus 로고
    • Multiscale modeling in biology - New insights into cancer illustrate how mathematical tools are enhancing the understanding of life from the smallest scale to the grandest
    • Schnell S, Grima R, Maini PK: Multiscale modeling in biology - New insights into cancer illustrate how mathematical tools are enhancing the understanding of life from the smallest scale to the grandest. American Scientist. 2007, 95 (2): 134-142. 10.1511/2007.64.134.
    • (2007) American Scientist , vol.95 , Issue.2 , pp. 134-142
    • Schnell, S.1    Grima, R.2    Maini, P.K.3
  • 46
    • 0142092630 scopus 로고    scopus 로고
    • In silico models for cellular and molecular immunology: successes, promises and challenges
    • Chakraborty AK, Dustin ML, Shaw AS: In silico models for cellular and molecular immunology: successes, promises and challenges. Nat Immunol. 2003, 4 (10): 933-6. 10.1038/ni1003-933.
    • (2003) Nat Immunol , vol.4 , Issue.10 , pp. 933-936
    • Chakraborty, A.K.1    Dustin, M.L.2    Shaw, A.S.3
  • 47
    • 77950361733 scopus 로고    scopus 로고
    • Multi-scale modelling in computational biomedicine
    • Sloot PMA, Hoekstra AG: Multi-scale modelling in computational biomedicine. Briefings in Bioinformatics. 2010, 11 (1): 142-152. 10.1093/bib/bbp038.
    • (2010) Briefings in Bioinformatics , vol.11 , Issue.1 , pp. 142-152
    • Sloot, P.M.A.1    Hoekstra, A.G.2
  • 48
    • 84866861707 scopus 로고    scopus 로고
    • High-Performance Interaction-Based Simulation of Gut Immunopathologies with ENteric Immunity SImulator (ENISI).
    • Bisset K, et al: High-Performance Interaction-Based Simulation of Gut Immunopathologies with ENteric Immunity SImulator (ENISI). 2012 Ieee 26th International Parallel and Distributed Processing Symposium (Ipdps). 2012, 48-59.
    • (2012) 2012 Ieee 26th International Parallel and Distributed Processing Symposium (Ipdps) , pp. 48-59
  • 49
    • 84909632141 scopus 로고    scopus 로고
    • Computational modeling of heterogeneity and function of CD4+ T cells
    • Carbo A, et al: Computational modeling of heterogeneity and function of CD4+ T cells. Front Cell Dev Biol. 2014, 2: 31-
    • (2014) Front Cell Dev Biol , vol.2 , pp. 31
    • Carbo, A.1
  • 50
    • 84867423956 scopus 로고    scopus 로고
    • Modeling the Role of Peroxisome Proliferator-Activated Receptor gamma and MicroRNA-146 in Mucosal Immune Responses to Clostridium difficile
    • Viladomiu M, et al: Modeling the Role of Peroxisome Proliferator-Activated Receptor gamma and MicroRNA-146 in Mucosal Immune Responses to Clostridium difficile. PLoS One. 2012, 7 (10): e47525-10.1371/journal.pone.0047525.
    • (2012) PLoS One , vol.7 , Issue.10 , pp. e47525
    • Viladomiu, M.1
  • 51
    • 77952954251 scopus 로고    scopus 로고
    • Model of colonic inflammation: immune modulatory mechanisms in inflammatory bowel disease
    • Wendelsdorf K, et al: Model of colonic inflammation: immune modulatory mechanisms in inflammatory bowel disease. J Theor Biol. 2010, 264 (4): 1225-39. 10.1016/j.jtbi.2010.03.027.
    • (2010) J Theor Biol , vol.264 , Issue.4 , pp. 1225-1239
    • Wendelsdorf, K.1
  • 52
    • 85020633183 scopus 로고    scopus 로고
    • Complex adaptive systems modeling with Repast Simphony
    • North MJ, et al: Complex adaptive systems modeling with Repast Simphony. Complex Adaptive Systems Modeling. 2013, 1: 3-10.1186/2194-3206-1-3.
    • (2013) Complex Adaptive Systems Modeling , vol.1 , pp. 3
    • North, M.J.1
  • 53
    • 84993725134 scopus 로고    scopus 로고
    • Introduction: The Simulation of Social Agents
    • Sallach D, Macal C: Introduction: The Simulation of Social Agents. Special Issue Social Science Computer Review. 2001, 19 (3): 245-248. 10.1177/089443930101900301.
    • (2001) Special Issue Social Science Computer Review , vol.19 , Issue.3 , pp. 245-248
    • Sallach, D.1    Macal, C.2
  • 55
    • 47949099328 scopus 로고    scopus 로고
    • CellDesigner 3.5: A versatile modeling tool for biochemical networks
    • Funahashi A, et al: CellDesigner 3.5: A versatile modeling tool for biochemical networks. Proceedings of the Ieee. 2008, 96 (8): 1254-1265.
    • (2008) Proceedings of the Ieee , vol.96 , Issue.8 , pp. 1254-1265
    • Funahashi, A.1
  • 56
    • 80052221036 scopus 로고    scopus 로고
    • A declarative model assembly infrastructure for verification and validation.
    • North MJ, et al: A declarative model assembly infrastructure for verification and validation. Advancing Social Simulation: The First World Congress. 2007, 129-140. 10.1007/978-4-431-73167-2_13.
    • (2007) Advancing Social Simulation: The First World Congress , pp. 129-140
    • North, M.J.1
  • 57
    • 84940666251 scopus 로고    scopus 로고
    • Suervised learning methods in modeling of CD4+ T cell heterogeneity.
    • Lu P, et al: Suervised learning methods in modeling of CD4+ T cell heterogeneity. BioData Mining. 2015
    • (2015) BioData Mining
    • Lu, P.1
  • 58
    • 84961653557 scopus 로고    scopus 로고
    • Supervised learning with artificial neural networks in modeling of cell differentiation processes.
    • Morgan Kaufmann: Burlignton, MA
    • Lu P, et al: Supervised learning with artificial neural networks in modeling of cell differentiation processes. Emerging Trends in Computational Biology, Bioinformatics and Systems Biology. 2015, Morgan Kaufmann: Burlignton, MA
    • (2015) Emerging Trends in Computational Biology, Bioinformatics and Systems Biology.
    • Lu, P.1
  • 59
    • 84894515658 scopus 로고    scopus 로고
    • Neural network models for classifying immune cell subsets
    • Shangai, China
    • Mei Y, et al: Neural network models for classifying immune cell subsets. BIBM. 2013, Shangai, China
    • (2013) BIBM
    • Mei, Y.1
  • 60
    • 4344591762 scopus 로고    scopus 로고
    • T-bet upregulation and subsequent interleukin 12 stimulation are essential for induction of Th1 mediated immunopathology in Crohn's disease
    • Matsuoka K, et al: T-bet upregulation and subsequent interleukin 12 stimulation are essential for induction of Th1 mediated immunopathology in Crohn's disease. Gut. 2004, 53 (9): 1303-8. 10.1136/gut.2003.024190.
    • (2004) Gut , vol.53 , Issue.9 , pp. 1303-1308
    • Matsuoka, K.1
  • 61
    • 33646577466 scopus 로고    scopus 로고
    • Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells
    • Bettelli E, et al: Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006, 441 (7090): 235-8. 10.1038/nature04753.
    • (2006) Nature , vol.441 , Issue.7090 , pp. 235-238
    • Bettelli, E.1
  • 62
    • 36248965294 scopus 로고    scopus 로고
    • TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology
    • McGeachy MJ, et al: TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007, 8 (12): 1390-7. 10.1038/ni1539.
    • (2007) Nat Immunol , vol.8 , Issue.12 , pp. 1390-1397
    • McGeachy, M.J.1
  • 63
    • 85003047735 scopus 로고    scopus 로고
    • Systems modeling of the role of interleukin-21 in the maintenance of effector CD4+ T cell responses during chronic Helicobacter pylori infection
    • Carbo A, et al: Systems modeling of the role of interleukin-21 in the maintenance of effector CD4+ T cell responses during chronic Helicobacter pylori infection. MBio. 2014, 5 (4): e01243-14.
    • (2014) MBio , vol.5 , Issue.4 , pp. e01243-e01314
    • Carbo, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.