메뉴 건너뛰기




Volumn 153, Issue , 2015, Pages 62-76

Sparse semi-supervised support vector machines by DC programming and DCA

Author keywords

DC approximation; DC programming and DCA; Exact penalty; Feature selection; Non convex optimization; Semi supervised SVM

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVEX OPTIMIZATION; FEATURE EXTRACTION; FUNCTIONS; OPTIMIZATION;

EID: 84961287929     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.11.051     Document Type: Article
Times cited : (30)

References (63)
  • 1
    • 0004493166 scopus 로고    scopus 로고
    • On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
    • Amaldi E., Kann V. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theor. Comput. Sci. 1998, 209:237-260.
    • (1998) Theor. Comput. Sci. , vol.209 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 2
    • 84898958346 scopus 로고    scopus 로고
    • Proceedings of the Conference on Advances in Neural Information Processing Systems II, Cambridge, MA, USA
    • Kristin P. Bennett Ayhan Demiriz, Semi-supervised support vector machines, in: Proceedings of the Conference on Advances in Neural Information Processing Systems II, Cambridge, MA, USA, 1999, pp. 368-374.
    • (1999) Semi-supervised support vector machines , pp. 368-374
    • Bennett Ayhan Demiriz, K.P.1
  • 4
    • 84898975526 scopus 로고    scopus 로고
    • Advances in Neural Information Proceeding Systems 16, MIT Press
    • T.D. Bie, N. Cristianini, Convex methods for transduction, in: Advances in Neural Information Proceeding Systems 16, MIT Press, 2004, p. 73.
    • (2004) Convex methods for transduction , pp. 73
    • Bie, T.D.1    Cristianini, N.2
  • 5
    • 51949086172 scopus 로고    scopus 로고
    • Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics, Barbados
    • O. Chapelle, A. Zien, Semi-supervised classification by low density separation, in: Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics, Barbados, 2005, pp. 57-64.
    • (2005) Semi-supervised classification by low density separation , pp. 57-64
    • Chapelle, O.1    Zien, A.2
  • 7
    • 41549144249 scopus 로고    scopus 로고
    • Optimization techniques for semi-supervised support vector machines
    • Chapelle O., Sindhwani V., Keerthi S.S. Optimization techniques for semi-supervised support vector machines. J. Mach. Learn. Res. 2008, 9:203-233.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 203-233
    • Chapelle, O.1    Sindhwani, V.2    Keerthi, S.S.3
  • 8
    • 77957948033 scopus 로고    scopus 로고
    • A sparse large margin semi-supervised learning method
    • Choi H., Kim J., Kim Y. A sparse large margin semi-supervised learning method. J. Korean Stat. Soc. 2010, 39(4):479.
    • (2010) J. Korean Stat. Soc. , vol.39 , Issue.4 , pp. 479
    • Choi, H.1    Kim, J.2    Kim, Y.3
  • 11
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its Oracle Properties
    • Fan J., Li R. Variable selection via nonconcave penalized likelihood and its Oracle Properties. J. Am. Stat. Assoc. 2001, 96:1348-1360.
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 12
    • 0036454664 scopus 로고    scopus 로고
    • Semi-supervised support vector machines for unlabeled data classification
    • Fung G., Mangasarian O. Semi-supervised support vector machines for unlabeled data classification. Optim. Methods Softw. 2001, 15:29.
    • (2001) Optim. Methods Softw. , vol.15 , pp. 29
    • Fung, G.1    Mangasarian, O.2
  • 14
    • 0347968052 scopus 로고    scopus 로고
    • Sparse representation in union of bases
    • Gribonval R., Nielsen M. Sparse representation in union of bases. IEEE Trans. Inf. Theory 2003, 49:3320-3325.
    • (2003) IEEE Trans. Inf. Theory , vol.49 , pp. 3320-3325
    • Gribonval, R.1    Nielsen, M.2
  • 17
    • 34147095576 scopus 로고    scopus 로고
    • Proceedings 15th International Conference on Pattern Recognition
    • L. Hermes, J.M. Buhmann, Feature selection for support vector machines, in: Proceedings 15th International Conference on Pattern Recognition, vol. 2, 2000, pp. 712-715.
    • (2000) Feature selection for support vector machines , vol.2 , pp. 712-715
    • Hermes, L.1    Buhmann, J.M.2
  • 19
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Hui Z. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101(476):1418-1429.
    • (2006) J. Am. Stat. Assoc. , vol.101 , Issue.476 , pp. 1418-1429
    • Hui, Z.1
  • 25
    • 0001445010 scopus 로고    scopus 로고
    • Solving a class of linearly constrained indefinite quadratic problems by DC algorithms
    • Le Thi H.A., Pham Dinh T. Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. J. Glob. Optim. 1997, 11(3):253-285.
    • (1997) J. Glob. Optim. , vol.11 , Issue.3 , pp. 253-285
    • Le Thi, H.A.1    Pham Dinh, T.2
  • 26
    • 15244346000 scopus 로고    scopus 로고
    • The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems
    • Le Thi H.A., Pham Dinh T. The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 2005, 133:23-46.
    • (2005) Ann. Oper. Res. , vol.133 , pp. 23-46
    • Le Thi, H.A.1    Pham Dinh, T.2
  • 27
    • 33847251003 scopus 로고    scopus 로고
    • A new efficient algorithm based on DC programming and DCA for clustering
    • Le Thi H.A., Belghiti T., Pham Dinh T. A new efficient algorithm based on DC programming and DCA for clustering. J. Glob. Optim. 2006, 37:593-608.
    • (2006) J. Glob. Optim. , vol.37 , pp. 593-608
    • Le Thi, H.A.1    Belghiti, T.2    Pham Dinh, T.3
  • 28
    • 34447102036 scopus 로고    scopus 로고
    • Optimization based DC programming and DCA for hierarchical clustering
    • Le Thi H.A., Le Hoai M., Pham Dinh T. Optimization based DC programming and DCA for hierarchical clustering. Eur. J. Oper. Res. 2007, 183:1067-1085.
    • (2007) Eur. J. Oper. Res. , vol.183 , pp. 1067-1085
    • Le Thi, H.A.1    Le Hoai, M.2    Pham Dinh, T.3
  • 29
    • 57849147343 scopus 로고    scopus 로고
    • A DC programming approach for feature selection in support vector machines learning
    • Le Thi H.A., Le Hoai M., Nguyen N.V., Pham Dinh T. A DC programming approach for feature selection in support vector machines learning. J. Adv. Data Anal. Classif. 2008, 2(3):259-278.
    • (2008) J. Adv. Data Anal. Classif. , vol.2 , Issue.3 , pp. 259-278
    • Le Thi, H.A.1    Le Hoai, M.2    Nguyen, N.V.3    Pham Dinh, T.4
  • 32
  • 33
    • 84942368519 scopus 로고    scopus 로고
    • Feature selection in machine learning: an exact penalty approach using a difference of convex function algorithm
    • published online 04 Jul
    • H.A. Le Thi , M. Le Hoai, T. Pham Dinh, Feature selection in machine learning: an exact penalty approach using a difference of convex function algorithm, Mach. Learn., published online 04 Jul, 2014,. doi:10.1007/s10994-014-5455-y.
    • (2014) Mach. Learn
    • Le Thi, H.A.1    Le Hoai, M.2    Pham Dinh, T.3
  • 34
    • 84904859974 scopus 로고    scopus 로고
    • Feature selection for linear SVMs under uncertain data. robust optimization based on difference of convex functions algorithms
    • Le Thi H.A., Vo X.T., Pham Dinh T. Feature selection for linear SVMs under uncertain data. robust optimization based on difference of convex functions algorithms. Neural Netw. 2014, 59:36-50.
    • (2014) Neural Netw. , vol.59 , pp. 36-50
    • Le Thi, H.A.1    Vo, X.T.2    Pham Dinh, T.3
  • 35
    • 84906779671 scopus 로고    scopus 로고
    • Self-organizing maps by difference of convex functions optimization
    • Le Thi H.A., Nguyen M.C. Self-organizing maps by difference of convex functions optimization. Data Min. Knowl. Discov. 2014, 28(5-6):1336-1365.
    • (2014) Data Min. Knowl. Discov. , vol.28 , Issue.5-6 , pp. 1336-1365
    • Le Thi, H.A.1    Nguyen, M.C.2
  • 36
    • 84961296753 scopus 로고    scopus 로고
    • DC Programming and DCA.
    • H.A. Le Thi, DC Programming and DCA. http://lita.sciences.univ-metz.fr/~lethi.
    • Le Thi, H.A.1
  • 37
    • 71149093081 scopus 로고    scopus 로고
    • Proceedings of the 26th International Conference on Machine Learning, Montreal, Canada
    • Y.F. Li, J.T. Kwok, Z.H. Zhou, Semi-supervised learning using label Mean, in: Proceedings of the 26th International Conference on Machine Learning, Montreal, Canada, 2009, pp. 1-8.
    • (2009) Semi-supervised learning using label Mean , pp. 1-8
    • Li, Y.F.1    Kwok, J.T.2    Zhou, Z.H.3
  • 38
    • 15944365213 scopus 로고    scopus 로고
    • Multicategory ψ-learning and support vector machine. computational tools
    • Liu Y., Shen X., Doss H. Multicategory ψ-learning and support vector machine. computational tools. J. Comput. Graph. Stat. 2005, 14:219-236.
    • (2005) J. Comput. Graph. Stat. , vol.14 , pp. 219-236
    • Liu, Y.1    Shen, X.2    Doss, H.3
  • 40
    • 30044438683 scopus 로고    scopus 로고
    • Combined SVM-based feature selection and classification
    • Neumann J., Schnörr C., Steidl G. Combined SVM-based feature selection and classification. Mach. Learn. 2005, 61(1-3):129-150.
    • (2005) Mach. Learn. , vol.61 , Issue.1-3 , pp. 129-150
    • Neumann, J.1    Schnörr, C.2    Steidl, G.3
  • 42
    • 0000939953 scopus 로고    scopus 로고
    • Convex analysis approach to d.c. programming. theory, algorithm and applications
    • Pham Dinh T., Le Thi H.A. Convex analysis approach to d.c. programming. theory, algorithm and applications. Acta Math. Vietnam. 1997, 22:289-355.
    • (1997) Acta Math. Vietnam. , vol.22 , pp. 289-355
    • Pham Dinh, T.1    Le Thi, H.A.2
  • 44
    • 78149282159 scopus 로고    scopus 로고
    • An efficient combination of DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs
    • Pham Dinh T., Nguyen Canh N., Le Thi H.A. An efficient combination of DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs. J. Glob. Optim. 2010, 48(4):595-632.
    • (2010) J. Glob. Optim. , vol.48 , Issue.4 , pp. 595-632
    • Pham Dinh, T.1    Nguyen Canh, N.2    Le Thi, H.A.3
  • 45
    • 35248871506 scopus 로고    scopus 로고
    • A bilinear formulation for vector sparsity optimization
    • Peleg D., Meir R. A bilinear formulation for vector sparsity optimization. Signal Process. 2008, 8(2):375-389.
    • (2008) Signal Process. , vol.8 , Issue.2 , pp. 375-389
    • Peleg, D.1    Meir, R.2
  • 46
    • 84880232279 scopus 로고    scopus 로고
    • Learning sparse classifiers with difference of convex functions algorithms
    • Ong C.S., Le Thi H.A. Learning sparse classifiers with difference of convex functions algorithms. Optim. Methods Softw. 2013, 28:4.
    • (2013) Optim. Methods Softw. , vol.28 , pp. 4
    • Ong, C.S.1    Le Thi, H.A.2
  • 47
    • 84893553584 scopus 로고    scopus 로고
    • Cost-Sensitive support vector machine for semi-supervised learning
    • Qi Tian Y., Shi Y., Yu X. Cost-Sensitive support vector machine for semi-supervised learning. Proc. Comput. Sci. 2013, 18:1684-1689.
    • (2013) Proc. Comput. Sci. , vol.18 , pp. 1684-1689
    • Qi, T.Y.1    Shi, Y.2    Yu, X.3
  • 48
    • 84879922284 scopus 로고    scopus 로고
    • "Modelling, Computation and Optimization in Information Systems and Management Sciences", Communications in Computer and Information Science CCIS, Springer
    • M. Thiao, T. Pham Dinh, H.A. Le Thi, DC programming approach for a class of nonconvex programs involving l0 norm, in: "Modelling, Computation and Optimization in Information Systems and Management Sciences", Communications in Computer and Information Science CCIS, vol. 14, Springer, 2008, pp. 358-367.
    • (2008) DC programming approach for a class of nonconvex programs involving l0 norm , vol.14 , pp. 358-367
    • Thiao, M.1    Pham Dinh, T.2    Le Thi, H.A.3
  • 49
    • 84890447445 scopus 로고    scopus 로고
    • Variable selection using SVM-based criteria
    • Rakotomamonjy A. Variable selection using SVM-based criteria. J. Mach. Learn. Res. 2003, 3:1357-1370.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1357-1370
    • Rakotomamonjy, A.1
  • 50
    • 33747105621 scopus 로고    scopus 로고
    • Proceedings of the 23rd International Conference on Machine Learning ICML 2006, Pittsburgh, Pennsylvania
    • C. Ronan, S. Fabian, W. Jason, B. Lé, Trading Convexity for Scalability, in: Proceedings of the 23rd International Conference on Machine Learning ICML 2006, Pittsburgh, Pennsylvania, 2006, pp. 201-208.
    • (2006) Trading Convexity for Scalability , pp. 201-208
    • Ronan, C.1    Fabian, S.2    Jason, W.3    Lé, B.4
  • 54
    • 33750373672 scopus 로고    scopus 로고
    • Proceeding SIGIR '06 Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
    • V. Sindhwani, S. Keerthi, Large scale semi-supervised linear SVMs, in: Proceeding SIGIR '06 Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2006, pp. 477-484.
    • (2006) Large scale semi-supervised linear SVMs , pp. 477-484
    • Sindhwani, V.1    Keerthi, S.2
  • 55
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 1996, 46:431-439.
    • (1996) J. R. Stat. Soc. , vol.46 , pp. 431-439
    • Tibshirani, R.1
  • 57
    • 33749253228 scopus 로고
    • On structural risk minimization or overall risk in a problem of pattern recognition
    • Vapnik V., Sterin A. On structural risk minimization or overall risk in a problem of pattern recognition. Autom. Remote Control 1977, 10(3):1495-1503.
    • (1977) Autom. Remote Control , vol.10 , Issue.3 , pp. 1495-1503
    • Vapnik, V.1    Sterin, A.2
  • 59
    • 84856051408 scopus 로고    scopus 로고
    • Semi-supervised learning for classification with uncertainty
    • Zhang R., Liu T.B., Zheng M.W. Semi-supervised learning for classification with uncertainty. Adv. Mater. Res. 2012, 433-440:3584-3590.
    • (2012) Adv. Mater. Res. , pp. 3584-3590
    • Zhang, R.1    Liu, T.B.2    Zheng, M.W.3
  • 60
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou H. The adaptive lasso and its oracle properties. J. Am. Stat. Ass. 2006, 101:1418-1429.
    • (2006) J. Am. Stat. Ass. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 62
    • 34547164089 scopus 로고    scopus 로고
    • Robust regression shrinkage and consistent variable selection via the LAD-LASSO
    • Wang H., Li G., Jiang G. Robust regression shrinkage and consistent variable selection via the LAD-LASSO. J. Bus. Econ. Stat. 2007, 25(3):347-355.
    • (2007) J. Bus. Econ. Stat. , vol.25 , Issue.3 , pp. 347-355
    • Wang, H.1    Li, G.2    Jiang, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.