메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 45-54

Sparse quasi-Newton optimization for semi-supervised support vector machines

Author keywords

Non convex optimization; Nystr m approximation; Quasi Newton methods; Semi supervised support vector machines; Sparse data

Indexed keywords

BINARY CLASSIFICATION APPROACH; BLACK-BOX OPTIMIZATION; CLASSIFICATION PERFORMANCE; LABELED DATA; NONCONVEX OPTIMIZATION; OPTIMIZATION SCHEME; OPTIMIZATION TASK; QUASI-NEWTON; QUASI-NEWTON METHODS; QUASI-NEWTON OPTIMIZATION; REAL WORLD DATA; REAL-WORLD SCENARIO; RESEARCH DIRECTIONS; RUN-TIME RESULTS; SEMI-SUPERVISED; SPARSE DATA; STATE-OF-THE-ART METHODS; UNLABELED DATA; YIELD MODELS;

EID: 84862194001     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (23)

References (28)
  • 1
    • 72149123904 scopus 로고    scopus 로고
    • Semisu-pervised least squares support vector machine
    • Adankon, M., Cheriet, M., and Biem, A. (2009). Semisu-pervised least squares support vector machine. IEEE Transactions on Neural Networks, 20(12):1858-1870.
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.12 , pp. 1858-1870
    • Adankon, M.1    Cheriet, M.2    Biem, A.3
  • 8
    • 41549144249 scopus 로고    scopus 로고
    • Optimization techniques for semi-supervised support vector machines
    • Chapelle, O., Sindhwani, V., and Keerthi, S. S. (2008). Optimization techniques for semi-supervised support vector machines. Journal of Mach. Learn. Res., 9:203-233.
    • (2008) Journal of Mach. Learn. Res. , vol.9 , pp. 203-233
    • Chapelle, O.1    Sindhwani, V.2    Keerthi, S.S.3
  • 11
    • 0036454664 scopus 로고    scopus 로고
    • Semi-supervised support vector machines for unlabeled data classification
    • Fung, G. and Mangasarian, O. L. (2001). Semi-supervised support vector machines for unlabeled data classification. Optimization Methods and Software, 15:29-44.
    • (2001) Optimization Methods and Software , vol.15 , pp. 29-44
    • Fung, G.1    Mangasarian, O.L.2
  • 13
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Joachims, T. (1999). Transductive inference for text classification using support vector machines. In Proc. Int. Conf. on Mach. Learn., pages 200-209.
    • (1999) Proc. Int. Conf. on Mach. Learn. , pp. 200-209
    • Joachims, T.1
  • 23
    • 33749253228 scopus 로고
    • On structural risk minimization or overall risk in a problem of pattern recognition
    • Vapnik, V. and Sterin, A. (1977). On structural risk minimization or overall risk in a problem of pattern recognition. Aut. and Remote Control, 10(3):1495-1503.
    • (1977) Aut. and Remote Control , vol.10 , Issue.3 , pp. 1495-1503
    • Vapnik, V.1    Sterin, A.2
  • 24
    • 29344456217 scopus 로고    scopus 로고
    • Unsupervised and semi-supervised multi-class support vector machines
    • Xu, L. and Schuurmans, D. (2005). Unsupervised and semi-supervised multi-class support vector machines. In Proc. National Conf. on Art. Intell., pages 904-910.
    • (2005) Proc. National Conf. on Art. Intell. , pp. 904-910
    • Xu, L.1    Schuurmans, D.2
  • 25
    • 71149121119 scopus 로고    scopus 로고
    • Prototype vector machine for large scale semi-supervised learning
    • Zhang, K., Kwok, J. T., and Parvin, B. (2009). Prototype vector machine for large scale semi-supervised learning. In Proc. of the Int. Conf. on Mach. Learn., pages 1233-1240.
    • (2009) Proc. of the Int. Conf. on Mach. Learn. , pp. 1233-1240
    • Zhang, K.1    Kwok, J.T.2    Parvin, B.3
  • 26
    • 0001868572 scopus 로고    scopus 로고
    • Text categorization based on regularized linear classification methods
    • Zhang, T. and Oles, F. J. (2001). Text categorization based on regularized linear classification methods. Information Retrieval, 4:5-31.
    • (2001) Information Retrieval , vol.4 , pp. 5-31
    • Zhang, T.1    Oles, F.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.