메뉴 건너뛰기




Volumn 101, Issue 1-3, 2015, Pages 163-186

Feature selection in machine learning: an exact penalty approach using a Difference of Convex function Algorithm

Author keywords

DC programming; DCA; Exact penalty; Feature selection; Zero norm

Indexed keywords

ALGORITHMS; APPROXIMATION ALGORITHMS; ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); FUNCTIONS; ITERATIVE METHODS; LEARNING SYSTEMS; LINEAR PROGRAMMING;

EID: 84942368519     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-014-5455-y     Document Type: Article
Times cited : (72)

References (54)
  • 1
    • 0004493166 scopus 로고    scopus 로고
    • On the approximability of minimizing non zero variables or unsatisfied relations in linear systems
    • Amaldi, E., & Kann, V. (1998). On the approximability of minimizing non zero variables or unsatisfied relations in linear systems. Theoretical Computer Science, 209, 237–260.
    • (1998) Theoretical Computer Science , vol.209 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 3
    • 84942375814 scopus 로고    scopus 로고
    • Bradley, P. S., & Mangasarian, O. L. (1998). Feature selection via concave minimization and support vector machines. In Proceeding of international conference on machine learning ICML’98
    • Bradley, P. S., & Mangasarian, O. L. (1998). Feature selection via concave minimization and support vector machines. In Proceeding of international conference on machine learning ICML’98.
  • 6
    • 78149326445 scopus 로고    scopus 로고
    • Lower bound theory of nonzero entries in solutions of l2-lp minimization
    • Chen, X., Xu, F. M., & Ye, Y. (2010). Lower bound theory of nonzero entries in solutions of l2-lp minimization. SIAM Journal on Scientific Computing, 32(5), 2832–2852.
    • (2010) SIAM Journal on Scientific Computing , vol.32 , Issue.5 , pp. 2832-2852
    • Chen, X.1    Xu, F.M.2    Ye, Y.3
  • 7
    • 33845998197 scopus 로고    scopus 로고
    • Survey and taxonomy of feature selection algorithms in intrusion detection system. In Proceedings of inscrypt, 2006
    • Chen, Y., Li, Y., Cheng, X.-Q., & Guo, L. (2006). Survey and taxonomy of feature selection algorithms in intrusion detection system. In Proceedings of inscrypt, 2006. LNCS (Vol. 4318, 153–167).
    • (2006) LNCS , vol.4318 , pp. 153-167
    • Chen, Y.1    Li, Y.2    Cheng, X.-Q.3    Guo, L.4
  • 8
    • 34250704272 scopus 로고    scopus 로고
    • Collober, R., Sinz F., Weston, J., & Bottou, L. (2006). Trading convexity for scalability. In Proceedings of the 23rd international conference on machine learning ICML 2006 (pp. 201–208). Pittsburgh, PA. ISBN:1-59593-383-2
    • Collober, R., Sinz F., Weston, J., & Bottou, L. (2006). Trading convexity for scalability. In Proceedings of the 23rd international conference on machine learning ICML 2006 (pp. 201–208). Pittsburgh, PA. ISBN:1-59593-383-2.
  • 11
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 1348–1360.
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 13
    • 70450245260 scopus 로고    scopus 로고
    • Recovering sparse signals with a certain family of nonconvex penalties and dc programming
    • Gasso, G., Rakotomamonjy, A., & Canu, S. (2009). Recovering sparse signals with a certain family of nonconvex penalties and dc programming. IEEE Transactions on Signal Processing, 57, 4686–4698.
    • (2009) IEEE Transactions on Signal Processing , vol.57 , pp. 4686-4698
    • Gasso, G.1    Rakotomamonjy, A.2    Canu, S.3
  • 14
    • 0031102203 scopus 로고    scopus 로고
    • Sparse signal reconstructions from limited data using FOCUSS: A re-weighted minimum norm algorithm
    • Gorodnitsky, I. F., & Rao, B. D. (1997). Sparse signal reconstructions from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 45, 600–616.
    • (1997) IEEE Transactions on Signal Processing , vol.45 , pp. 600-616
    • Gorodnitsky, I.F.1    Rao, B.D.2
  • 15
    • 84879054008 scopus 로고    scopus 로고
    • Sparse high-dimensional fractional-norm support vector machine via DC programming
    • Guan, W., & Gray, A. (2013). Sparse high-dimensional fractional-norm support vector machine via DC programming. Computational Statistics and Data Analysis, 67, 136–148.
    • (2013) Computational Statistics and Data Analysis , vol.67 , pp. 136-148
    • Guan, W.1    Gray, A.2
  • 18
    • 49949115667 scopus 로고    scopus 로고
    • Asymptotic properties of bridge estimators in sparse high-dimensional regression models
    • Huang, J., Horowitz, J., & Ma, S. (2008). Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Annals of Statistics, 36, 587–613.
    • (2008) Annals of Statistics , vol.36 , pp. 587-613
    • Huang, J.1    Horowitz, J.2    Ma, S.3
  • 19
  • 20
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • Knight, K., & Fu, W. (2000). Asymptotics for lasso-type estimators. Annals of Statistics, 28, 1356–1378.
    • (2000) Annals of Statistics , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 21
    • 84942375816 scopus 로고    scopus 로고
    • Krause, N., & Singer, Y. (2004). Leveraging the margin more carefully. In Proceedings of the 21 international conference on Machine learning ICML 2004. Banff, Alberta, Canada, 63.ISBN:1-58113-828-5
    • Krause, N., & Singer, Y. (2004). Leveraging the margin more carefully. In Proceedings of the 21 international conference on Machine learning ICML 2004. Banff, Alberta, Canada, 63.ISBN:1-58113-828-5.
  • 22
    • 84942375817 scopus 로고    scopus 로고
    • Le Thi, H.A. DC Programming and DCA
    • Le Thi, H.A. DC Programming and DCA. http://lita.sciences.univ-metz.fr/~lethi.
  • 23
    • 0242648619 scopus 로고    scopus 로고
    • Contribution à l’optimisation non convexe et l’optimisation globale: Théorie
    • Habilitation à Diriger des Recherches, Université de Rouen
    • Le Thi, H. A. (1997). Contribution à l’optimisation non convexe et l’optimisation globale: Théorie. Algorithmes et Applications: Habilitation à Diriger des Recherches, Université de Rouen.
    • (1997) Algorithmes et Applications
    • Le Thi, H.A.1
  • 24
    • 0001445010 scopus 로고    scopus 로고
    • Solving a class of linearly constrained indefinite quadratic problems by DC algorithms
    • Le Thi, H. A., & Pham Dinh, T. (1997). Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. Journal of Global Optimization, 11(3), 253–285.
    • (1997) Journal of Global Optimization , vol.11 , Issue.3 , pp. 253-285
    • Le Thi, H.A.1    Pham Dinh, T.2
  • 25
    • 15244346000 scopus 로고    scopus 로고
    • The DC (difference of convex functions) programming and DCA revisited with DC models of real-world nonconvex optimization problems
    • Le Thi, H. A., & Pham Dinh, T. (2005). The DC (difference of convex functions) programming and DCA revisited with DC models of real-world nonconvex optimization problems. Annals of Operations Research, 133, 23–46.
    • (2005) Annals of Operations Research , vol.133 , pp. 23-46
    • Le Thi, H.A.1    Pham Dinh, T.2
  • 26
    • 33847251003 scopus 로고    scopus 로고
    • A new efficient algorithm based on DC programming and DCA for clustering
    • Le Thi, H. A., Belghiti, T., Pham Dinh, T. (2007) A new efficient algorithm based on DC programming and DCA for clustering. Journal of Global Optimization, 37, 593–608.
    • (2007) Journal of Global Optimization , vol.37 , pp. 593-608
    • Le Thi, H.A.1    Belghiti, T.2    Pham Dinh, T.3
  • 27
    • 34447102036 scopus 로고    scopus 로고
    • Optimization based DC programming and DCA for hierarchical clustering
    • Le Thi, H. A., Le, H. M. & Pham Dinh, T. (2006). Optimization based DC programming and DCA for hierarchical clustering. European Journal of Operational Research, 183(3), 1067–1085.
    • (2006) European Journal of Operational Research , vol.183 , Issue.3 , pp. 1067-1085
    • Le Thi, H.A.1    Le, H.M.2    Pham Dinh, T.3
  • 30
    • 84859231961 scopus 로고    scopus 로고
    • Le Thi, H. A., Huynh, V. N., & Pham Dinh, T. (2012). Exact penalty and error bounds in DC programming. Journal of Global Optimization dedicated to Reiner Horst, 52(3), 509–535
    • Le Thi, H. A., Huynh, V. N., & Pham Dinh, T. (2012). Exact penalty and error bounds in DC programming. Journal of Global Optimization dedicated to Reiner Horst, 52(3), 509–535.
  • 31
    • 15944365213 scopus 로고    scopus 로고
    • Multicategory ψ-learning and support vector machine: Computational tools
    • Liu, Y., Shen, X., & Doss, H. (2005). Multicategory ψ-learning and support vector machine: Computational tools. Journal of Computational and Graphical Statistics, 14, 219–236.
    • (2005) Journal of Computational and Graphical Statistics , vol.14 , pp. 219-236
    • Liu, Y.1    Shen, X.2    Doss, H.3
  • 34
    • 0027842081 scopus 로고
    • Matching pursuit in a time-frequency dictionary
    • Mallat, S., & Zhang, Z. (1993). Matching pursuit in a time-frequency dictionary. IEEE Transactions on Signal Processing, 41(12), 3397–3415.
    • (1993) IEEE Transactions on Signal Processing , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 36
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24, 227–234.
    • (1995) SIAM Journal on Computing , vol.24 , pp. 227-234
    • Natarajan, B.K.1
  • 37
    • 30044438683 scopus 로고    scopus 로고
    • Combined SVM-based feature selection and classification
    • Neumann, J., Schnörr, C., & Steidl, G. (2005). Combined SVM-based feature selection and classification. Machine Learning, 61(1–3), 129–150.
    • (2005) Machine Learning , vol.61 , Issue.1-3 , pp. 129-150
    • Neumann, J.1    Schnörr, C.2    Steidl, G.3
  • 38
    • 84880232279 scopus 로고    scopus 로고
    • Learning sparse classifiers with Difference of Convex functions algorithms
    • Ong, C. S., & Le Thi, H. A. (2013). Learning sparse classifiers with Difference of Convex functions algorithms. Optimization Methods and Software, 28(4), 830–854.
    • (2013) Optimization Methods and Software , vol.28 , Issue.4 , pp. 830-854
    • Ong, C.S.1    Le Thi, H.A.2
  • 39
    • 35248871506 scopus 로고    scopus 로고
    • A bilinear formulation for vector sparsity optimization
    • Peleg, D., & Meir, R. (2008). A bilinear formulation for vector sparsity optimization. Signal Processing, 8(2), 375–389.
    • (2008) Signal Processing , vol.8 , Issue.2 , pp. 375-389
    • Peleg, D.1    Meir, R.2
  • 40
    • 0032081028 scopus 로고    scopus 로고
    • DC optimization algorithms for solving the trust region subproblem
    • Pham Dinh, T., & Le Thi, H. A. (1998). DC optimization algorithms for solving the trust region subproblem. SIAM Journal on Optimization, 8, 476–505.
    • (1998) SIAM Journal on Optimization , vol.8 , pp. 476-505
    • Pham Dinh, T.1    Le Thi, H.A.2
  • 41
    • 84958526926 scopus 로고    scopus 로고
    • Recent advances in DC programming and DCA. Transactions on Computational Collective
    • Pham Dinh, T., & Le Thi, H. A (2014). Recent advances in DC programming and DCA. Transactions on Computational Collective. Intelligence., 8342, 1–37.
    • (2014) Intelligence. , vol.8342 , pp. 1-37
    • Pham Dinh, T.1    Le Thi, H.A.2
  • 42
    • 80051543708 scopus 로고    scopus 로고
    • (Formula Presented.) penalty for sparse linear and sparse multiple kernel multi-task learning
    • Rakotomamonjy, A., Flamary, R., Gasso, G., & Canu, S. (2011). (Formula Presented.)-ℓq penalty for sparse linear and sparse multiple kernel multi-task learning. IEEE Transactions on Neural Networks, 22(8), 13071320.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.8 , pp. 13071320
    • Rakotomamonjy, A.1    Flamary, R.2    Gasso, G.3    Canu, S.4
  • 46
    • 77956525932 scopus 로고    scopus 로고
    • A DC programming approach for sparse eigenvalue problem
    • Thiao, M., Pham Dinh, T., & Le Thi, H. A. (2010). A DC programming approach for sparse eigenvalue problem. Proceeding of ICML, 2010, 1063–1070.
    • (2010) Proceeding of ICML , vol.2010 , pp. 1063-1070
    • Thiao, M.1    Pham Dinh, T.2    Le Thi, H.A.3
  • 47
    • 85007196558 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, 46, 431–439.
    • (1996) Journal of the Royal Statistical Society , vol.46 , pp. 431-439
    • Tibshirani, R.1
  • 48
    • 0037686659 scopus 로고    scopus 로고
    • The convex concave procedure
    • Yuille, A. L., & Rangarajan, A. (2003). The convex concave procedure. Neural Computation, 15(4), 915–936.
    • (2003) Neural Computation , vol.15 , Issue.4 , pp. 915-936
    • Yuille, A.L.1    Rangarajan, A.2
  • 49
    • 33746154240 scopus 로고    scopus 로고
    • The doubly regularized support vector machine
    • Wang, L., Zhu, J., & Zou, H. (2006). The doubly regularized support vector machine. Statistica Sinica, 16, 589–615.
    • (2006) Statistica Sinica , vol.16 , pp. 589-615
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 51
    • 30344438839 scopus 로고    scopus 로고
    • Gene selection using support vector machines with non-convex penalty
    • Zhang, H. H., Ahn, J., Lin, X., & Park, C. (2006). Gene selection using support vector machines with non-convex penalty. Bioinformatics, 2(1), 88–95.
    • (2006) Bioinformatics , vol.2 , Issue.1 , pp. 88-95
    • Zhang, H.H.1    Ahn, J.2    Lin, X.3    Park, C.4
  • 53
  • 54
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • Zou, H., & Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Annals of Statistics, 36(4), 1509–1533.
    • (2008) Annals of Statistics , vol.36 , Issue.4 , pp. 1509-1533
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.