메뉴 건너뛰기




Volumn 28, Issue 4, 2013, Pages 830-854

Learning sparse classifiers with difference of convex functions algorithms

Author keywords

binary classification; DCA; sparse features and examples

Indexed keywords

BINARY CLASSIFICATION; DCA; DIFFERENCE OF CONVEX FUNCTIONS; HIGH DIMENSIONAL DATA; MACHINE LEARNING REPOSITORY; NON-CONVEX OBJECTIVE FUNCTIONS; SPARSE FEATURES; UNIVERSITY OF CALIFORNIA;

EID: 84880232279     PISSN: 10556788     EISSN: 10294937     Source Type: Journal    
DOI: 10.1080/10556788.2011.652630     Document Type: Conference Paper
Times cited : (43)

References (33)
  • 3
    • 84887352298 scopus 로고    scopus 로고
    • Trading convexity for scalability
    • L. Bottou, O. Chapelle, D. DeCoste, and J.Weston, eds. MIT Press, USA
    • R. Collobert, F. Sinz, J.Weston, and L. Bottou, Trading convexity for scalability, in Large Scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, and J.Weston, eds., MIT Press, USA, 2007, pp. 275-300.
    • (2007) Large Scale Kernel Machines , pp. 275-300
    • Collobert, R.1    Sinz, F.2    Weston, J.3    Bottou, L.4
  • 6
    • 77957197521 scopus 로고    scopus 로고
    • Tech. Rep. arXiv:0905.2138.v1, Computer Science and Engineering, UCSD
    • Y. Freund, A more robust boosting algorithm, Tech. Rep. arXiv:0905.2138.v1, Computer Science and Engineering, UCSD, 2009.
    • (2009) A More Robust Boosting Algorithm
    • Freund, Y.1
  • 7
    • 70450245260 scopus 로고    scopus 로고
    • Recovering sparse signals with a certain family of non-convex penalties and DC programming
    • G. Gasso, A. Rakotomamonjy, and S. Canu, Recovering sparse signals with a certain family of non-convex penalties and DC programming, IEEE Trans. Signal Process. 57(12) (2009), pp. 4686-4698.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.12 , pp. 4686-4698
    • Gasso, G.1    Rakotomamonjy, A.2    Canu, S.3
  • 8
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res. 3 (2003), pp. 1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 11
    • 15244346000 scopus 로고    scopus 로고
    • The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems
    • H.A. Le Thi and T. Pham Dinh, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems, Ann. Oper. Res. 133 (2005), pp. 23-46.
    • (2005) Ann. Oper. Res. , vol.133 , pp. 23-46
    • Le Thi, H.A.1    Pham Dinh, T.2
  • 12
    • 33847251003 scopus 로고    scopus 로고
    • A new efficient algorithm based on DC programming and DCA for clustering
    • H.A. Le Thi, T. Belghiti, and T. Pham Dinh, A new efficient algorithm based on DC programming and DCA for clustering, J. Global Optim. 37 (2006), pp. 593-608.
    • (2006) J. Global Optim. , vol.37 , pp. 593-608
    • Le Thi, H.A.1    Belghiti, T.2    Pham Dinh, T.3
  • 13
    • 34447102036 scopus 로고    scopus 로고
    • Optimization based DC programming and DCA for hierarchical clustering
    • H.A. Le Thi, H. Minh Le, and T. Pham Dinh, Optimization based DC programming and DCA for hierarchical clustering, Eur. J. Oper. Res. 183 (2007), pp. 1067-1085.
    • (2007) Eur. J. Oper. Res. , vol.183 , pp. 1067-1085
    • Le Thi, H.A.1    Minh Le, H.2    Pham Dinh, T.3
  • 14
    • 57849147343 scopus 로고    scopus 로고
    • A DC programming approach for feature selection in support vector machines learning
    • H.A. Le Thi, H.M. Le, V.V. Nguyen, and T. Pham Dinh, A DC programming approach for feature selection in support vector machines learning, Adv. Data Anal. Classification 2(3) (2008), pp. 259-278.
    • (2008) Adv. Data Anal. Classification , vol.2 , Issue.3 , pp. 259-278
    • Le Thi, H.A.1    Le, H.M.2    Nguyen, V.V.3    Pham Dinh, T.4
  • 15
    • 33745638149 scopus 로고    scopus 로고
    • Multicategory ψ-learning
    • Y. Liu and X. Shen, Multicategory ψ-learning, J. Amer. Statist. Assoc. 101 (2006), pp. 500-509.
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 500-509
    • Liu, Y.1    Shen, X.2
  • 16
    • 15944365213 scopus 로고    scopus 로고
    • Multicategory ψ-learning and support vector machine: Computational tools
    • Y. Liu, X. Shen, and H. Doss, Multicategory ψ-learning and support vector machine: Computational tools, J. Comput. Graph. Statist. 14 (2005), pp. 219-236.
    • (2005) J. Comput. Graph. Statist. , vol.14 , pp. 219-236
    • Liu, Y.1    Shen, X.2    Doss, H.3
  • 17
    • 56449118765 scopus 로고    scopus 로고
    • Random classification noise defeats all convex potential boosters
    • Helsinki, Finland
    • P. Long and R. Servedio, Random classification noise defeats all convex potential boosters, International Conference on Machine Learning, Helsinki, Finland, 2008.
    • (2008) International Conference on Machine Learning
    • Long, P.1    Servedio, R.2
  • 18
    • 33745801137 scopus 로고    scopus 로고
    • Exact 1-norm support vector machines via unconstrained convex differentiable minimization
    • O.L. Mangasarian, Exact 1-norm support vector machines via unconstrained convex differentiable minimization, J. Mach. Learn. Res. 7 (2006), pp. 1517-1530.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1517-1530
    • Mangasarian, O.L.1
  • 19
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • N. Meinshausen and B.Yu, Lasso-type recovery of sparse representations for high-dimensional data, Ann. Statist. 37(1) (2009), pp. 246-270.
    • (2009) Ann. Statist. , vol.37 , Issue.1 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 20
    • 30044438683 scopus 로고    scopus 로고
    • Combined SVM-based feature selection and classification
    • J. Neumann, C. Schnörr, and G. Steidl, Combined SVM-based feature selection and classification, Mach. Learn. 61(1-3) (2005), pp. 129-150.
    • (2005) Mach. Learn. , vol.61 , Issue.1-3 , pp. 129-150
    • Neumann, J.1    Schnörr, C.2    Steidl, G.3
  • 21
    • 35248871506 scopus 로고    scopus 로고
    • A bilinear formulation for vector sparsity optimization
    • D. Peleg and R. Meir, A bilinear formulation for vector sparsity optimization, Signal Process. 88 (2008), pp. 375-389.
    • (2008) Signal Process. , vol.88 , pp. 375-389
    • Peleg, D.1    Meir, R.2
  • 22
    • 0142145419 scopus 로고
    • Algorithms for solving a class of non convex optimization problems. Methods of subgradients
    • Mathematics for Optimization, J.B. Hiriart-Urruty ed. Elsevier Science Publishers, B.V. North- Holland
    • T. Pham Dinh, Algorithms for solving a class of non convex optimization problems. Methods of subgradients, in Fermat Days 85. Mathematics for Optimization, J.B. Hiriart-Urruty ed., Elsevier Science Publishers, B.V. North- Holland, 1986.
    • (1986) Fermat Days , vol.85
    • Pham Dinh, T.1
  • 23
    • 0032081028 scopus 로고    scopus 로고
    • DC optimization algorithms for solving the trust region subproblem
    • T. Pham Dinh and H.A. Le Thi, DC optimization algorithms for solving the trust region subproblem, SIAM J. Optim. 8(2) (1998), pp. 476-505.
    • (1998) SIAM J. Optim. , vol.8 , Issue.2 , pp. 476-505
    • Pham Dinh, T.1    Le Thi, H.A.2
  • 25
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • I. Steinwart, On the influence of the kernel on the consistency of support vector machines, J. Mach. Learn. Res. 2 (2001), pp. 67-93.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 27
    • 38049041673 scopus 로고    scopus 로고
    • An oracle inequality for clipped regularized risk minimizers
    • B. Schölkopf, J. Platt, and T. Hoffman, eds., MIT Press, Cambridge, MA
    • I. Steinwart, D. Hush, and C. Scovel, An oracle inequality for clipped regularized risk minimizers, In B. Schölkopf, J. Platt, and T. Hoffman, eds., Advances in Neural Information Processing Systems 19, MIT Press, Cambridge, MA, pp. 1321-1328.
    • Advances in Neural Information Processing Systems , vol.19 , pp. 1321-1328
    • Steinwart, I.1    Hush, D.2    Scovel, C.3
  • 28
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • R. Tibshirani, Regression shrinkage and selection via the LASSO, J. R. Statist. Soc. B. 58(1) (1996), pp. 267-288.
    • (1996) J. R. Statist. Soc. B. , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 29
    • 35348869458 scopus 로고    scopus 로고
    • Robust truncated-hinge-loss support vector machines
    • Y. Wu and Y. Liu, Robust truncated-hinge-loss support vector machines, J. Amer. Statist. Assoc. 102(479) (2007), pp. 974-983.
    • (2007) J. Amer. Statist. Assoc. , vol.102 , Issue.479 , pp. 974-983
    • Wu, Y.1    Liu, Y.2
  • 30
    • 0037686659 scopus 로고    scopus 로고
    • The concave-convex procedure
    • A.L.Yuille and A. Rangarajan, The concave-convex procedure, Neural Comput. 15(4) (2003), pp. 915-936.
    • (2003) Neural Comput , vol.15 , Issue.4 , pp. 915-936
    • Yuille, A.L.1    Rangarajan, A.2
  • 31
    • 69049086702 scopus 로고    scopus 로고
    • Some sharp performance bounds for least squares regression with l1 regularization
    • T. Zhang, Some sharp performance bounds for least squares regression with l1 regularization, Ann. Statist. 37(5A) (2009), pp. 109-2144.
    • (2009) Ann. Statist. , vol.37 A , Issue.5
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.