-
1
-
-
84876429229
-
SnapShot: Pancreatic cancer
-
Han, H. & Von Hoff, D. D. SnapShot: pancreatic cancer. Cancer Cell 23, 424-424 e421, doi: 10.1016/j.ccr.2013.03.008 (2013).
-
(2013)
Cancer Cell
, vol.23
, pp. e421-e424
-
-
Han, H.1
Von Hoff, D.D.2
-
2
-
-
84876802642
-
Roles for KRAS in pancreatic tumor development and progression
-
di Magliano, M. P. & Logsdon, C. D. Roles for KRAS in pancreatic tumor development and progression. Gastroenterology 144, 1220-1229, doi: 10.1053/j.gastro.2013.01.071 (2013).
-
(2013)
Gastroenterology
, vol.144
, pp. 1220-1229
-
-
Di Magliano, M.P.1
Logsdon, C.D.2
-
3
-
-
84921350297
-
Modulation of FoxO1 expression by miR-21 to promote growth of pancreatic ductal adenocarcinoma
-
Song, W., Li, Q., Wang, L. & Wang, L. Modulation of FoxO1 Expression by miR-21 to Promote Growth of Pancreatic Ductal Adenocarcinoma. Cell Physiol Biochem 35, 184-190, doi: 10.1159/000369686 (2015).
-
(2015)
Cell Physiol Biochem
, vol.35
, pp. 184-190
-
-
Song, W.1
Li, Q.2
Wang, L.3
Wang, L.4
-
4
-
-
84931259652
-
FoxO1-negative cells are cancer stem-like cells in pancreatic ductal adenocarcinoma
-
Song, W., Li, Q., Wang, L., Huang, W. & Wang, L. FoxO1-negative cells are cancer stem-like cells in pancreatic ductal adenocarcinoma. Sci rep 5, 10081, doi: 10.1038/srep10081 (2015).
-
(2015)
Sci Rep
, vol.5
, pp. 10081
-
-
Song, W.1
Li, Q.2
Wang, L.3
Huang, W.4
Wang, L.5
-
5
-
-
84927797530
-
Cyr61 promotes growth of pancreatic carcinoma via nuclear exclusion of p27
-
Shi, W. et al. Cyr61 promotes growth of pancreatic carcinoma via nuclear exclusion of p27. Tumour Biol 35, 11147-11151, doi: 10.1007/s13277-014-2423-x (2014).
-
(2014)
Tumour Biol
, vol.35
, pp. 11147-11151
-
-
Shi, W.1
-
6
-
-
84925643644
-
TGFbeta signaling in pancreatic ductal adenocarcinoma
-
Zhang, H. et al. TGFbeta signaling in pancreatic ductal adenocarcinoma. Tumour Biol 36, 1613-1618, doi: 10.1007/s13277-014-2757-4 (2015).
-
(2015)
Tumour Biol
, vol.36
, pp. 1613-1618
-
-
Zhang, H.1
-
7
-
-
84907936201
-
Busulfan inhibits growth of human osteosarcoma through miR-200 family microRNAs in vitro and in vivo
-
Mei, Q., Li, F., Quan, H., Liu, Y. & Xu, H. Busulfan inhibits growth of human osteosarcoma through miR-200 family microRNAs in vitro and in vivo. Cancer Sci 105, 755-762, doi: 10.1111/cas.12436 (2014).
-
(2014)
Cancer Sci
, vol.105
, pp. 755-762
-
-
Mei, Q.1
Li, F.2
Quan, H.3
Liu, Y.4
Xu, H.5
-
8
-
-
84947126237
-
MiRNA-494 inhibits metastasis of cervical cancer through pttg1
-
Chen, B., Hou, Z., Li, C. & Tong, Y. MiRNA-494 inhibits metastasis of cervical cancer through Pttg1. Tumour Biol 36, 7143-9. doi: 10.1007/s13277-015-3440-0 (2015).
-
(2015)
Tumour Biol
, vol.36
, pp. 7143-7149
-
-
Chen, B.1
Hou, Z.2
Li, C.3
Tong, Y.4
-
9
-
-
84929961084
-
Regulation of growth of human bladder cancer by miR-192
-
Jin, Y., Lu, J., Wen, J., Shen, Y. & Wen, X. Regulation of growth of human bladder cancer by miR-192. Tumour Biol 36, 3791-3797, doi: 10.1007/s13277-014-3020-8 (2015).
-
(2015)
Tumour Biol
, vol.36
, pp. 3791-3797
-
-
Jin, Y.1
Lu, J.2
Wen, J.3
Shen, Y.4
Wen, X.5
-
10
-
-
84922395100
-
MiRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer
-
Liu, G., Jiang, C., Li, D., Wang, R. & Wang, W. MiRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer. Tumour Biol 35, 9801-9806, doi: 10.1007/s13277-014-2273-6 (2014).
-
(2014)
Tumour Biol
, vol.35
, pp. 9801-9806
-
-
Liu, G.1
Jiang, C.2
Li, D.3
Wang, R.4
Wang, W.5
-
11
-
-
84919847649
-
MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing akt phosphorylation in glioblastoma
-
Wang, F., Xiao, W., Sun, J., Han, D. & Zhu, Y. MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol 35, 8653-8658, doi: 10.1007/s13277-014-2131-6 (2014).
-
(2014)
Tumour Biol
, vol.35
, pp. 8653-8658
-
-
Wang, F.1
Xiao, W.2
Sun, J.3
Han, D.4
Zhu, Y.5
-
12
-
-
84925282952
-
MiR-143 inhibits EGFR-signaling-dependent osteosarcoma invasion
-
Wang, Q., Cai, J., Wang, J., Xiong, C. & Zhao, J. MiR-143 inhibits EGFR-signaling-dependent osteosarcoma invasion. Tumour Biol 35, 12743-12748, doi: 10.1007/s13277-014-2600-y (2014).
-
(2014)
Tumour Biol
, vol.35
, pp. 12743-12748
-
-
Wang, Q.1
Cai, J.2
Wang, J.3
Xiong, C.4
Zhao, J.5
-
13
-
-
84925286503
-
MiR99a modulates MMP7 and MMP13 to regulate invasiveness of Kaposi's sarcoma
-
Zhang, J., Wang, S., Lu, L. & Wei, G. MiR99a modulates MMP7 and MMP13 to regulate invasiveness of Kaposi's sarcoma. Tumour Biol 35, 12567-12573, doi: 10.1007/s13277-014-2577-6 (2014).
-
(2014)
Tumour Biol
, vol.35
, pp. 12567-12573
-
-
Zhang, J.1
Wang, S.2
Lu, L.3
Wei, G.4
-
14
-
-
84877060316
-
Targeting miR-21 for the therapy of pancreatic cancer
-
Sicard, F., Gayral, M., Lulka, H., Buscail, L. & Cordelier, P. Targeting miR-21 for the therapy of pancreatic cancer. Mol Ther 21, 986-994, doi: 10.1038/mt.2013.35 (2013).
-
(2013)
Mol Ther
, vol.21
, pp. 986-994
-
-
Sicard, F.1
Gayral, M.2
Lulka, H.3
Buscail, L.4
Cordelier, P.5
-
15
-
-
84868302145
-
Changes in miR-143 and miR-21 expression and clinicopathological correlations in pancreatic cancers
-
Tavano, F. et al. Changes in miR-143 and miR-21 expression and clinicopathological correlations in pancreatic cancers. Pancreas 41, 1280-1284, doi: 10.1097/MPA.0b013e31824c11f4 (2012).
-
(2012)
Pancreas
, vol.41
, pp. 1280-1284
-
-
Tavano, F.1
-
16
-
-
77951745289
-
Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF
-
Ali, S. et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 70, 3606-3617, doi: 10.1158/0008-5472.CAN-09-4598 (2010).
-
(2010)
Cancer Res
, vol.70
, pp. 3606-3617
-
-
Ali, S.1
-
17
-
-
84887486620
-
MiRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP4K4
-
Zhao, G. et al. miRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP4K4. Mol Cancer Ther 12, 2569-2580, doi: 10.1158/1535-7163.MCT-13-0296 (2013).
-
(2013)
Mol Cancer Ther
, vol.12
, pp. 2569-2580
-
-
Zhao, G.1
-
18
-
-
84878214589
-
MiRNA profiling in pancreatic cancer and restoration of chemosensitivity
-
Singh, S., Chitkara, D., Kumar, V., Behrman, S. W. & Mahato, R. I. miRNA profiling in pancreatic cancer and restoration of chemosensitivity. Cancer Lett 334, 211-220, doi: 10.1016/j.canlet.2012.10.008 (2013).
-
(2013)
Cancer Lett
, vol.334
, pp. 211-220
-
-
Singh, S.1
Chitkara, D.2
Kumar, V.3
Behrman, S.W.4
Mahato, R.I.5
-
19
-
-
77955033963
-
MiRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer
-
Yu, S. et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res 70, 6015-6025, doi: 10.1158/0008-5472.CAN-09-4531 (2010).
-
(2010)
Cancer Res
, vol.70
, pp. 6015-6025
-
-
Yu, S.1
-
20
-
-
84883229593
-
Targeting cancer cells resistant to hypoxia and nutrient starvation to improve anti-angiogeneic therapy
-
Osawa, T. & Shibuya, M. Targeting cancer cells resistant to hypoxia and nutrient starvation to improve anti-angiogeneic therapy. Cell Cycle 12, 2519-2520, doi: 10.4161/cc.25729 (2013).
-
(2013)
Cell Cycle
, vol.12
, pp. 2519-2520
-
-
Osawa, T.1
Shibuya, M.2
-
21
-
-
79957534572
-
Targeting hypoxia in cancer therapy
-
Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat Rev Cancer 11, 393-410, doi: 10.1038/nrc3064 (2011).
-
(2011)
Nat Rev Cancer
, vol.11
, pp. 393-410
-
-
Wilson, W.R.1
Hay, M.P.2
-
22
-
-
78649251947
-
Cancer therapy by targeting hypoxia-inducible factor-1
-
Li, Y. & Ye, D. Cancer therapy by targeting hypoxia-inducible factor-1. Curr Cancer Drug Targets 10, 782-796 (2010).
-
(2010)
Curr Cancer Drug Targets
, vol.10
, pp. 782-796
-
-
Li, Y.1
Ye, D.2
-
23
-
-
33846870322
-
Role of hypoxia-inducible factor-1alpha as a cancer therapy target
-
Patiar, S. & Harris, A. L. Role of hypoxia-inducible factor-1alpha as a cancer therapy target. Endocr Relat Cancer 13 Suppl 1, S61-75, doi: 10.1677/erc.1.01290 (2006).
-
(2006)
Endocr Relat Cancer
, vol.13
, pp. S61-S75
-
-
Patiar, S.1
Harris, A.L.2
-
24
-
-
33749362031
-
Inhibiting hypoxia-inducible factor 1 for cancer therapy
-
Melillo, G. Inhibiting hypoxia-inducible factor 1 for cancer therapy. Mol Cancer Res 4, 601-605, doi: 10.1158/1541-7786.MCR-06-0235 (2006).
-
(2006)
Mol Cancer Res
, vol.4
, pp. 601-605
-
-
Melillo, G.1
-
25
-
-
84885001174
-
HIF1 contributes to hypoxia-induced pancreatic cancer cells invasion via promoting QSOX1 expression
-
Shi, C. Y., Fan, Y., Liu, B. & Lou, W. H. HIF1 contributes to hypoxia-induced pancreatic cancer cells invasion via promoting QSOX1 expression. Cell Physiol Biochem 32, 561-568, doi: 10.1159/000354460 (2013).
-
(2013)
Cell Physiol Biochem
, vol.32
, pp. 561-568
-
-
Shi, C.Y.1
Fan, Y.2
Liu, B.3
Lou, W.H.4
-
26
-
-
77953090345
-
CXCL12 (SDF-1)/CXCR4 pathway in cancer
-
Teicher, B. A. & Fricker, S. P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16, 2927-2931, doi: 10.1158/1078-0432. CCR-09-2329 (2010).
-
(2010)
Clin Cancer Res
, vol.16
, pp. 2927-2931
-
-
Teicher, B.A.1
Fricker, S.P.2
-
27
-
-
33750294009
-
The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis
-
Ratajczak, M. Z. et al. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 20, 1915-1924, doi: 10.1038/sj.leu.2404357 (2006).
-
(2006)
Leukemia
, vol.20
, pp. 1915-1924
-
-
Ratajczak, M.Z.1
-
28
-
-
84903174349
-
Transplantation of mesenchymal stem cells recruits trophic macrophages to induce pancreatic beta cell regeneration in diabetic mice
-
Cao, X., Han, Z. B., Zhao, H. & Liu, Q. Transplantation of mesenchymal stem cells recruits trophic macrophages to induce pancreatic beta cell regeneration in diabetic mice. Int J Biochem Cell Biol 53, 372-379, doi: 10.1016/j.biocel.2014.06.003 (2014).
-
(2014)
Int J Biochem Cell Biol
, vol.53
, pp. 372-379
-
-
Cao, X.1
Han, Z.B.2
Zhao, H.3
Liu, Q.4
-
29
-
-
4043184065
-
Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1
-
Ceradini, D. J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10, 858-864, doi: 10.1038/nm1075 (2004).
-
(2004)
Nat Med
, vol.10
, pp. 858-864
-
-
Ceradini, D.J.1
-
30
-
-
79955959619
-
COMP-ang1 stimulates HIF-1alpha-mediated SDF-1 overexpression and recovers ischemic injury through BMderived progenitor cell recruitment
-
Youn, S. W. et al. COMP-Ang1 stimulates HIF-1alpha-mediated SDF-1 overexpression and recovers ischemic injury through BMderived progenitor cell recruitment. Blood 117, 4376-4386, doi: 10.1182/blood-2010-07-295964 (2011).
-
(2011)
Blood
, vol.117
, pp. 4376-4386
-
-
Youn, S.W.1
-
31
-
-
78149300933
-
Low-dose radiation augments vasculogenesis signaling through HIF-1-dependent and -independent SDF-1 induction
-
Lerman, O. Z. et al. Low-dose radiation augments vasculogenesis signaling through HIF-1-dependent and -independent SDF-1 induction. Blood 116, 3669-3676, doi: 10.1182/blood-2009-03-213629 (2010).
-
(2010)
Blood
, vol.116
, pp. 3669-3676
-
-
Lerman, O.Z.1
-
32
-
-
18844406447
-
Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue
-
Ceradini, D. J. & Gurtner, G. C. Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med 15, 57-63, doi: 10.1016/j.tcm.2005.02.002 (2005).
-
(2005)
Trends Cardiovasc Med
, vol.15
, pp. 57-63
-
-
Ceradini, D.J.1
Gurtner, G.C.2
-
33
-
-
84893735629
-
Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis
-
Marquez-Curtis, L. A. & Janowska-Wieczorek, A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. BioMed research international 2013, 561098, doi: 10.1155/2013/561098 (2013).
-
(2013)
BioMed Research International
, vol.2013
, pp. 561098
-
-
Marquez-Curtis, L.A.1
Janowska-Wieczorek, A.2
-
34
-
-
23844513413
-
Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4 axis
-
Kucia, M. et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 23, 879-894, doi: 10.1634/stemcells.2004-0342 (2005).
-
(2005)
Stem Cells
, vol.23
, pp. 879-894
-
-
Kucia, M.1
-
35
-
-
7944230945
-
CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion
-
Kucia, M. et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 35, 233-245 (2004).
-
(2004)
J Mol Histol
, vol.35
, pp. 233-245
-
-
Kucia, M.1
-
36
-
-
0142172456
-
Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses
-
Salcedo, R. & Oppenheim, J. J. Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation 10, 359-370, doi: 10.1038/sj.mn.7800200 (2003).
-
(2003)
Microcirculation
, vol.10
, pp. 359-370
-
-
Salcedo, R.1
Oppenheim, J.J.2
-
37
-
-
0016793022
-
Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas
-
Lieber, M., Mazzetta, J., Nelson-Rees, W., Kaplan, M. & Todaro, G. Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. Int J Cancer 15, 741-747 (1975).
-
(1975)
Int J Cancer
, vol.15
, pp. 741-747
-
-
Lieber, M.1
Mazzetta, J.2
Nelson-Rees, W.3
Kaplan, M.4
Todaro, G.5
-
38
-
-
84880383915
-
Isolation, culture, and functional evaluation of bone marrow-derived macrophages
-
Davis, B. K. Isolation, culture, and functional evaluation of bone marrow-derived macrophages. Methods Mol Biol 1031, 27-35, doi: 10.1007/978-1-62703-481-4-3 (2013).
-
(2013)
Methods Mol Biol
, vol.1031
, pp. 27-35
-
-
Davis, B.K.1
-
39
-
-
77649271201
-
Bone marrow-derived macrophages (BMM): Isolation and applications
-
pdb prot5080
-
Weischenfeldt, J. & Porse, B. Bone Marrow-Derived Macrophages (BMM): Isolation and Applications. CSH protocols 2008, pdb prot5080, doi: 10.1101/pdb.prot5080 (2008).
-
(2008)
CSH Protocols 2008
-
-
Weischenfeldt, J.1
Porse, B.2
-
40
-
-
0037265240
-
Alternative activation of macrophages
-
Gordon, S. Alternative activation of macrophages. Nat Rev Immunol 3, 23-35, doi: 10.1038/nri978nri978 (2003).
-
(2003)
Nat Rev Immunol
, vol.3
, pp. 23-35
-
-
Gordon, S.1
-
41
-
-
33751551172
-
Dual role of macrophages in tumor growth and angiogenesis
-
doi: jlb.1105656/jlb.1105656
-
Lamagna, C., Aurrand-Lions, M. & Imhof, B. A. Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol 80, 705-713, doi: jlb.1105656/jlb.1105656 (2006).
-
(2006)
J Leukoc Biol
, vol.80
, pp. 705-713
-
-
Lamagna, C.1
Aurrand-Lions, M.2
Imhof, B.A.3
-
42
-
-
67650485985
-
Alternative activation of macrophages: An immunologic functional perspective
-
Martinez, F. O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27, 451-483, doi: 10.1146/annurev.immunol.021908.132532 (2009).
-
(2009)
Annu Rev Immunol
, vol.27
, pp. 451-483
-
-
Martinez, F.O.1
Helming, L.2
Gordon, S.3
-
43
-
-
63149088164
-
Trophic macrophages in development and disease
-
Pollard, J. W. Trophic macrophages in development and disease. Nat Rev Immunol 9, 259-270, doi: 10.1038/nri2528 (2009).
-
(2009)
Nat Rev Immunol
, vol.9
, pp. 259-270
-
-
Pollard, J.W.1
-
44
-
-
76249095169
-
Development of monocytes, macrophages, and dendritic cells
-
doi: 327/5966/656/science.1178331
-
Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656-661, doi: 327/5966/656/science.1178331 (2010).
-
(2010)
Science
, vol.327
, pp. 656-661
-
-
Geissmann, F.1
-
45
-
-
77953268611
-
Alternative activation of macrophages: Mechanism and functions
-
doi: S1074-7613(10)00173-1/j.immuni.2010.05.007
-
Gordon, S. & Martinez, F. O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593-604, doi: S1074-7613(10)00173-1/j.immuni.2010.05.007 (2010).
-
(2010)
Immunity
, vol.32
, pp. 593-604
-
-
Gordon, S.1
Martinez, F.O.2
-
46
-
-
84897568455
-
M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7
-
Xiao, X. et al. M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proc Natl Acad Sci USA 111, E1211-1220, doi: 10.1073/pnas.1321347111 (2014).
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. E1211-E1220
-
-
Xiao, X.1
-
47
-
-
84922799330
-
Interaction between pancreatic cancer cells and tumor-associated macrophages promotes the invasion of pancreatic cancer cells and the differentiation and migration of macrophages
-
Meng, F. et al. Interaction between pancreatic cancer cells and tumor-associated macrophages promotes the invasion of pancreatic cancer cells and the differentiation and migration of macrophages. IUBMB Life 66, 835-846, doi: 10.1002/iub.1336 (2014).
-
(2014)
IUBMB Life
, vol.66
, pp. 835-846
-
-
Meng, F.1
-
48
-
-
84906791750
-
Coexpression of CD44-positive/CD133-positive cancer stem cells and CD204-positive tumor-associated macrophages is a predictor of survival in pancreatic ductal adenocarcinoma
-
Hou, Y. C., Chao, Y. J., Tung, H. L., Wang, H. C. & Shan, Y. S. Coexpression of CD44-positive/CD133-positive cancer stem cells and CD204-positive tumor-associated macrophages is a predictor of survival in pancreatic ductal adenocarcinoma. Cancer 120, 2766-2777, doi: 10.1002/cncr.28774 (2014).
-
(2014)
Cancer
, vol.120
, pp. 2766-2777
-
-
Hou, Y.C.1
Chao, Y.J.2
Tung, H.L.3
Wang, H.C.4
Shan, Y.S.5
-
49
-
-
84879663836
-
M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway
-
Liu, C. Y. et al. M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Invest 93, 844-854, doi: 10.1038/labinvest.2013.69 (2013).
-
(2013)
Lab Invest
, vol.93
, pp. 844-854
-
-
Liu, C.Y.1
-
50
-
-
84865132011
-
Clinical significance of folate receptor beta-expressing tumor-associated macrophages in pancreatic cancer
-
Kurahara, H. et al. Clinical significance of folate receptor beta-expressing tumor-associated macrophages in pancreatic cancer. Ann Surg Oncol 19, 2264-2271, doi: 10.1245/s10434-012-2263-0 (2012).
-
(2012)
Ann Surg Oncol
, vol.19
, pp. 2264-2271
-
-
Kurahara, H.1
-
51
-
-
84897093538
-
CXCL12 chemokine expression suppresses human pancreatic cancer growth and metastasis
-
Roy, I. et al. CXCL12 chemokine expression suppresses human pancreatic cancer growth and metastasis. PLoS One 9, e90400, doi: 10.1371/journal.pone.0090400 (2014).
-
(2014)
PLoS One
, vol.9
, pp. e90400
-
-
Roy, I.1
-
52
-
-
84929208809
-
MiR-454 prompts cell proliferation of human colorectal cancer cells by repressing CYLD expression
-
Liang, H. L. et al. MiR-454 prompts cell proliferation of human colorectal cancer cells by repressing CYLD expression. Asian Pac J Cancer Prev 16, 2397-2402 (2015).
-
(2015)
Asian Pac J Cancer Prev
, vol.16
, pp. 2397-2402
-
-
Liang, H.L.1
-
53
-
-
84948768211
-
MiR-454 functions as an oncogene by inhibiting CHD5 in hepatocellular carcinoma
-
Yu, L. et al. miR-454 functions as an oncogene by inhibiting CHD5 in hepatocellular carcinoma. Oncotarget 6, 39225-39234, doi: 10.18632/oncotarget.4407 (2015).
-
(2015)
Oncotarget
, vol.6
, pp. 39225-39234
-
-
Yu, L.1
-
54
-
-
84944179314
-
MiR-454 inhibited cell proliferation of human glioblastoma cells by suppressing PDK1 expression
-
Fang, B., Zhu, J., Wang, Y., Geng, F. & Li, G. MiR-454 inhibited cell proliferation of human glioblastoma cells by suppressing PDK1 expression. Biomed Pharmacother 75, 148-152, doi: 10.1016/j.biopha.2015.07.029 (2015).
-
(2015)
Biomed Pharmacother
, vol.75
, pp. 148-152
-
-
Fang, B.1
Zhu, J.2
Wang, Y.3
Geng, F.4
Li, G.5
-
55
-
-
84928823459
-
MiR-454 is down-regulated in osteosarcomas and suppresses cell proliferation and invasion by directly targeting c-met
-
Niu, G., Li, B., Sun, J. & Sun, L. miR-454 is down-regulated in osteosarcomas and suppresses cell proliferation and invasion by directly targeting c-Met. Cell Prolif 48, 348-355, doi: 10.1111/cpr.12187 (2015).
-
(2015)
Cell Prolif
, vol.48
, pp. 348-355
-
-
Niu, G.1
Li, B.2
Sun, J.3
Sun, L.4
|