메뉴 건너뛰기




Volumn 45, Issue 2, 2016, Pages 429-442

Exploring sentiment parsing of microblogging texts for opinion polling on chinese public figures

Author keywords

Microblogs; Opinion poll; RNN; Sentiment parsing; Sequence labeling

Indexed keywords

DATA MINING; RECURRENT NEURAL NETWORKS; SOCIAL NETWORKING (ONLINE); SURVEYS;

EID: 84960351529     PISSN: 0924669X     EISSN: 15737497     Source Type: Journal    
DOI: 10.1007/s10489-016-0768-0     Document Type: Article
Times cited : (26)

References (54)
  • 1
    • 70349188096 scopus 로고    scopus 로고
    • Micro-blogging as online word of mouth branding. In: CHI’09 Extended abstracts on human factors in computing systems. ACM
    • Jansen BJ, Zhang M, Sobel K, Chowdury A (2009) Micro-blogging as online word of mouth branding. In: CHI’09 Extended abstracts on human factors in computing systems. ACM, pp 3859–3864
    • (2009) Pp 3859–3864
    • Jansen, B.J.1    Zhang, M.2    Sobel, K.3    Chowdury, A.4
  • 3
    • 84890614558 scopus 로고    scopus 로고
    • From tweets to polls: linking text sentiment to public opinion time series
    • O’Connor B, Balasubramanyan R, Routledge BR, Smith NA (2010) From tweets to polls: linking text sentiment to public opinion time series. ICWSM 11(122–129):1–2
    • (2010) ICWSM , vol.11 , Issue.122-129 , pp. 1-2
    • O’Connor, B.1    Balasubramanyan, R.2    Routledge, B.R.3    Smith, N.A.4
  • 4
    • 84890668120 scopus 로고    scopus 로고
    • Predicting elections with twitter: what 140 characters reveal about political sentiment
    • Tumasjan A, Sprenger TO, Sandner PG, Welpe IM (2010) Predicting elections with twitter: what 140 characters reveal about political sentiment. ICWSM 10:178–185
    • (2010) ICWSM , vol.10 , pp. 178-185
    • Tumasjan, A.1    Sprenger, T.O.2    Sandner, P.G.3    Welpe, I.M.4
  • 5
    • 85167606442 scopus 로고    scopus 로고
    • Can collective sentiment expressed on twitter predict political elections?
    • Chung JE, Mustafaraj E (2011) Can collective sentiment expressed on twitter predict political elections?. In: AAAI
    • (2011) In: AAAI
    • Chung, J.E.1    Mustafaraj, E.2
  • 6
    • 84980724741 scopus 로고    scopus 로고
    • Predicting the 2011 dutch senate election results with twitter. In: Proceedings of the workshop on semantic analysis in social media. Association for Computational Linguistics
    • Sang ETK, Bos J (2012) Predicting the 2011 dutch senate election results with twitter. In: Proceedings of the workshop on semantic analysis in social media. Association for Computational Linguistics, pp 53–60
    • (2012) Pp 53–60
    • Sang, E.T.K.1    Bos, J.2
  • 7
    • 84949753884 scopus 로고    scopus 로고
    • Tracking political elections on social media: applications and experience. In: Proceedings of the 24th International conference on artificial intelligence. AAAI Press
    • Contractor D, Chawda B, Mehta S, Subramaniam LV, Faruquie TA (2015) Tracking political elections on social media: applications and experience. In: Proceedings of the 24th International conference on artificial intelligence. AAAI Press, pp 2320–2326
    • (2015) Pp 2320–2326
    • Contractor, D.1    Chawda, B.2    Mehta, S.3    Subramaniam, L.V.4    Faruquie, T.A.5
  • 12
    • 85009443541 scopus 로고    scopus 로고
    • Incremental recurrent neural network dependency parser with search-based discriminative training. In: Proceedings of the 19th Conference on Computational Language Learning
    • Yazdani M, Henderson J (2015) Incremental recurrent neural network dependency parser with search-based discriminative training. In: Proceedings of the 19th Conference on Computational Language Learning, pp 142–152
    • (2015) Pp 142–152
    • Yazdani, M.1    Henderson, J.2
  • 14
    • 84922802451 scopus 로고    scopus 로고
    • Using twitter sentiment to forecast the 2013 pakistani election and the 2014 indian election
    • Kagan V, Stevens A, Subrahmanian VS (2015) Using twitter sentiment to forecast the 2013 pakistani election and the 2014 indian election. IEEE Intell Syst 30(1):2–5
    • (2015) IEEE Intell Syst , vol.30 , Issue.1 , pp. 2-5
    • Kagan, V.1    Stevens, A.2    Subrahmanian, V.S.3
  • 15
    • 84947737151 scopus 로고    scopus 로고
    • Public opinions of light rail service in los angeles, an analysis using twitter data
    • Luong TTB, Houston D (2015) Public opinions of light rail service in los angeles, an analysis using twitter data. iConference 2015 Proceedings
    • (2015) iConference 2015 Proceedings
    • Luong, T.T.B.1    Houston, D.2
  • 17
    • 72449152909 scopus 로고    scopus 로고
    • Sentiment analysis of chinese documents: from sentence to document level
    • Zhang C (2009) Sentiment analysis of chinese documents: from sentence to document level. J Am Soc Inf Sci Technol
    • (2009) J Am Soc Inf Sci Technol
    • Zhang, C.1
  • 18
    • 84897584660 scopus 로고    scopus 로고
    • Cross-domain sentiment classification using a sentiment sensitive thesaurus
    • Bollegala D, Weir D, Carroll J (2013) Cross-domain sentiment classification using a sentiment sensitive thesaurus. IEEE Trans Knowl Data Eng 25(8):1719–1731
    • (2013) IEEE Trans Knowl Data Eng , vol.25 , Issue.8 , pp. 1719-1731
    • Bollegala, D.1    Weir, D.2    Carroll, J.3
  • 19
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 conference on empirical methods in natural language processing, vol 10. Association for Computational Linguistics
    • Pang B, Lee L, Vaithyanathan S (2002) Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 conference on empirical methods in natural language processing, vol 10. Association for Computational Linguistics, pp 79–86
    • (2002) Pp 79–86
    • Pang, B.1    Lee, L.2    Vaithyanathan, S.3
  • 20
    • 85112593657 scopus 로고    scopus 로고
    • Sentiment analysis using support vector machines with diverse information sources
    • Mullen T, Collier N (2004) Sentiment analysis using support vector machines with diverse information sources. In: EMNLP, vol 4, pp 412–418
    • (2004) EMNLP , vol.4 , pp. 412-418
    • Mullen, T.1    Collier, N.2
  • 21
    • 80053261327 scopus 로고    scopus 로고
    • Semi-supervised recursive autoencoders for predicting sentiment distributions. In: Proceedings of the conference on empirical methods in natural language processing. Association for Computational Linguistics
    • Socher R, Pennington J, Huang EH, Ng AY, Manning CD (2011) Semi-supervised recursive autoencoders for predicting sentiment distributions. In: Proceedings of the conference on empirical methods in natural language processing. Association for Computational Linguistics, pp 151–161
    • (2011) Pp 151–161
    • Socher, R.1    Pennington, J.2    Huang, E.H.3    Ng, A.Y.4    Manning, C.D.5
  • 23
    • 85146693510 scopus 로고    scopus 로고
    • Combining strengths, emotions and polarities for boosting twitter sentiment analysis. In: Proceedings of the second international workshop on issues of sentiment discovery and opinion mining. ACM
    • Bravo-Marquez F, Mendoza M, Poblete B (2013) Combining strengths, emotions and polarities for boosting twitter sentiment analysis. In: Proceedings of the second international workshop on issues of sentiment discovery and opinion mining. ACM, p 2
    • (2013) P 2
    • Bravo-Marquez, F.1    Mendoza, M.2    Poblete, B.3
  • 24
    • 84893144737 scopus 로고    scopus 로고
    • Unsupervised sentiment analysis with emotional signals. In: Proceedings of the 22nd international conference on World Wide Web. International World Wide Web Conferences Steering Committee
    • Hu X, Tang J, Gao H, Liu H (2013) Unsupervised sentiment analysis with emotional signals. In: Proceedings of the 22nd international conference on World Wide Web. International World Wide Web Conferences Steering Committee, pp 607–618
    • (2013) Pp 607–618
    • Hu, X.1    Tang, J.2    Gao, H.3    Liu, H.4
  • 25
    • 29344473560 scopus 로고    scopus 로고
    • Niblack W (2003) Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques
    • ICDM: IEEE
    • Yi J, Nasukawa T, Bunescu R, Niblack W (2003) Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques. In: Third IEEE international conference on data mining, 2003. ICDM 2003. IEEE, pp 427–434
    • (2003) mining , vol.2003 , pp. 427-434
    • Yi, J.1    Nasukawa, T.2    Bunescu, R.3
  • 26
    • 62949234099 scopus 로고    scopus 로고
    • Extracting product features and opinions from reviews. In: Natural language processing and text mining. Springer
    • Popescu A-M, Etzioni O (2007) Extracting product features and opinions from reviews. In: Natural language processing and text mining. Springer, pp 9–28
    • (2007) Pp 9–28
    • Popescu, A.-M.1    Etzioni, O.2
  • 27
    • 80053430466 scopus 로고    scopus 로고
    • Structure-aware review mining and summarization. In: Proceedings of the 23rd international conference on computational linguistics. Association for Computational Linguistics
    • Li F, Han C, Huang M, Zhu X, Xia Y-J, Zhang S, Hao Y (2010) Structure-aware review mining and summarization. In: Proceedings of the 23rd international conference on computational linguistics. Association for Computational Linguistics, pp 653–661
    • (2010) Pp 653–661
    • Li, F.1    Han, C.2    Huang, M.3    Zhu, X.4    Xia, Y.-J.5    Zhang, S.6    Hao, Y.7
  • 28
    • 84926052014 scopus 로고    scopus 로고
    • Opinion mining with deep recurrent neural networks. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)
    • Irsoy O, Cardie C (2014) Opinion mining with deep recurrent neural networks. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 720–728
    • (2014) Pp 720–728
    • Irsoy, O.1    Cardie, C.2
  • 29
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems
    • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
    • (2012) Pp 1097–1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 30
    • 84911364368 scopus 로고    scopus 로고
    • Large-scale video classification with convolutional neural networks
    • IEEE conference on computer vision and pattern recognition (CVPR), IEEE
    • Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Li F-F (2014) Large-scale video classification with convolutional neural networks. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1725–1732
    • (2014) In , vol.2014 , pp. 1725-1732
    • Karpathy, A.1    Toderici, G.2    Shetty, S.3    Leung, T.4    Sukthankar, R.5    Li, F.-F.6
  • 33
    • 0035127989 scopus 로고    scopus 로고
    • Symbolic knowledge extraction from trained neural networks: a sound approach
    • d’Avila Garcez AS, Broda K, Gabbay DM (2001) Symbolic knowledge extraction from trained neural networks: a sound approach. Artif Intell 125(1):155–207
    • (2001) Artif Intell , vol.125 , Issue.1 , pp. 155-207
    • d’Avila Garcez, A.S.1    Broda, K.2    Gabbay, D.M.3
  • 34
    • 34247872942 scopus 로고    scopus 로고
    • Cilios: connectionist inductive learning and inter-ontology similarities for recommending information agents
    • Rosaci D (2007) Cilios: connectionist inductive learning and inter-ontology similarities for recommending information agents. Inf Syst 32(6):793–825
    • (2007) Inf Syst , vol.32 , Issue.6 , pp. 793-825
    • Rosaci, D.1
  • 36
    • 34248330476 scopus 로고    scopus 로고
    • Abductive reasoning in neural-symbolic systems
    • d’Avila Garcez AS, Gabbay DM, Ray O, Woods J (2007) Abductive reasoning in neural-symbolic systems. Topoi 26(1):37–49
    • (2007) Topoi , vol.26 , Issue.1 , pp. 37-49
    • d’Avila Garcez, A.S.1    Gabbay, D.M.2    Ray, O.3    Woods, J.4
  • 37
    • 84898956227 scopus 로고    scopus 로고
    • Reasoning with neural tensor networks for knowledge base completion. In: Advances in neural information processing systems
    • Socher R, Chen D, Manning CD, Ng A (2013) Reasoning with neural tensor networks for knowledge base completion. In: Advances in neural information processing systems, pp 926– 934
    • (2013) Pp 926– 934
    • Socher, R.1    Chen, D.2    Manning, C.D.3    Ng, A.4
  • 38
    • 84906237242 scopus 로고    scopus 로고
    • Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding
    • Mesnil G, He X, Li D, Bengio Y (2013) Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding, pp 3771–3775
    • (2013) Pp 3771–3775
    • Mesnil, G.1    He, X.2    Li, D.3    Bengio, Y.4
  • 40
    • 84856513036 scopus 로고    scopus 로고
    • Neural networks for handwriting recognition. In: Computational intelligence paradigms in advanced pattern classification. Springer
    • Liwicki M, Graves A, Bunke H (2012) Neural networks for handwriting recognition. In: Computational intelligence paradigms in advanced pattern classification. Springer, pp 5–24
    • (2012) Pp 5–24
    • Liwicki, M.1    Graves, A.2    Bunke, H.3
  • 42
    • 84962374146 scopus 로고    scopus 로고
    • IEEE International Conference on bioinformatics and biomedicine (BIBM)
    • Li L, Jin L, Jiang Z, Song D, Huang D (2015) Biomedical named entity recognition based on extended recurrent neural networks. In: 2015 IEEE International Conference on bioinformatics and biomedicine (BIBM), pp 649–652
    • (2015) Pp 649–652
    • Li, L.1    Jin, L.2    Jiang, Z.3    Song, D.4
  • 45
    • 84978897682 scopus 로고    scopus 로고
    • Supervised sequence labelling with recurrent neural networks, vol 385
    • Graves A (2012) Supervised sequence labelling with recurrent neural networks, vol 385. Springer
    • (2012) Springer
    • Graves, A.1
  • 48
    • 84969972527 scopus 로고    scopus 로고
    • An empirical exploration of recurrent network architectures. In: Proceedings of the 32nd international conference on machine learning (ICML)
    • Jozefowicz R, Zaremba W, Sutskever I (2015) An empirical exploration of recurrent network architectures. In: Proceedings of the 32nd international conference on machine learning (ICML), pp 2342–2350
    • (2015) Pp 2342–2350
    • Jozefowicz, R.1    Zaremba, W.2    Sutskever, I.3
  • 49
    • 0031268931 scopus 로고    scopus 로고
    • Bidirectional recurrent neural networks
    • Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Trans Signal Process 45 (11):2673–2681
    • (1997) IEEE Trans Signal Process , vol.45 , Issue.11 , pp. 2673-2681
    • Schuster, M.1    Paliwal, K.K.2
  • 50
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.