메뉴 건너뛰기




Volumn 125, Issue 1-2, 2001, Pages 155-207

Symbolic knowledge extraction from trained neural networks: A sound approach

Author keywords

[No Author keywords available]

Indexed keywords

DECISION THEORY; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 0035127989     PISSN: 00043702     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0004-3702(00)00077-1     Document Type: Article
Times cited : (184)

References (37)
  • 1
    • 0000138466 scopus 로고
    • Template-based algorithms for connectionist rule extraction
    • G. Tesauro, D. Touretzky, Leen T. Cambridge, MA: MIT Press
    • Alexander J.A., Mozer M.C. Template-based algorithms for connectionist rule extraction. Tesauro G., Touretzky D., Leen T. Advances in Neural Information Processing Systems (NIPS). 7:1995;MIT Press, Cambridge, MA.
    • (1995) Advances in Neural Information Processing Systems (NIPS) , vol.7
    • Alexander, J.A.1    Mozer, M.C.2
  • 2
    • 0029484103 scopus 로고
    • A survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews R., Diederich J., Tickle A.B. A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems. 8:(6):1995.
    • (1995) Knowledge-Based Systems , vol.8 , Issue.6
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 11
    • 77951505493 scopus 로고
    • Classical negation in logic programs and disjunctive databases
    • Gelfond M., Lifschitz V. Classical negation in logic programs and disjunctive databases. New Generation Computing. 9:1991;365-386.
    • (1991) New Generation Computing , vol.9 , pp. 365-386
    • Gelfond, M.1    Lifschitz, V.2
  • 13
    • 0003979924 scopus 로고
    • Introduction to the Theory of Neural Computation, Santa Fe Institute
    • Reading, MA: Addison-Wesley
    • Hertz J., Krogh A., Palmer R.G. Introduction to the Theory of Neural Computation, Santa Fe Institute. Studies in the Science of Complexity. 1991;Addison-Wesley, Reading, MA.
    • (1991) Studies in the Science of Complexity
    • Hertz, J.1    Krogh, A.2    Palmer, R.G.3
  • 16
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks. 2:1989;359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 20
    • 0342827773 scopus 로고    scopus 로고
    • Extraction of linguistic rules from data via neural networks and fuzzy approximation
    • I. Cloete, & J.M. Zurada. Cambridge, MA: MIT Press
    • Lozowski A., Zurada J.M. Extraction of linguistic rules from data via neural networks and fuzzy approximation. Cloete I., Zurada J.M. Knowledge-Based Neurocomputing. 2000;403-417 MIT Press, Cambridge, MA.
    • (2000) Knowledge-Based Neurocomputing , pp. 403-417
    • Lozowski, A.1    Zurada, J.M.2
  • 22
    • 0026170884 scopus 로고
    • Logical versus analogical, symbolic versus connectionist, neat versus scruffy
    • Minsky M. Logical versus analogical, symbolic versus connectionist, neat versus scruffy. AI Magazine. 12:(2):1991.
    • (1991) AI Magazine , vol.12 , Issue.2
    • Minsky, M.1
  • 23
    • 0031270628 scopus 로고    scopus 로고
    • A partial order for the M-of-N rule extraction algorithm
    • Maire F. A partial order for the M-of-N rule extraction algorithm. IEEE Transactions on Neural Networks. 8:(6):1997;1542-1544.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.6 , pp. 1542-1544
    • Maire, F.1
  • 25
    • 0343036648 scopus 로고    scopus 로고
    • Argument-based extended logic programming with defeasible priorities
    • Prakken H., Sartor G. Argument-based extended logic programming with defeasible priorities. J. Appl. Non-Classical Logic. 7:(1/2):1997;25-75.
    • (1997) J. Appl. Non-Classical Logic , vol.7 , Issue.1-2 , pp. 25-75
    • Prakken, H.1    Sartor, G.2
  • 27
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D.E. Rumelhart, McClelland and the PDP Research Group J.L. Cambridge, MA: MIT Press
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning internal representations by error propagation. Rumelhart D.E., McClelland and the PDP Research Group J.L. Parallel Distributed Processing. 1:1986;MIT Press, Cambridge, MA.
    • (1986) Parallel Distributed Processing , vol.1
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 29
    • 0030633575 scopus 로고    scopus 로고
    • A penalty-function for pruning feedforward neural networks
    • Setiono R. A penalty-function for pruning feedforward neural networks. Neural Computation. 9:1997;185-204.
    • (1997) Neural Computation , vol.9 , pp. 185-204
    • Setiono, R.1
  • 30
    • 0030631792 scopus 로고    scopus 로고
    • Extracting rules from neural networks by pruning and hidden-unit splitting
    • Setiono R. Extracting rules from neural networks by pruning and hidden-unit splitting. Neural Computation. 9:1997;205-225.
    • (1997) Neural Computation , vol.9 , pp. 205-225
    • Setiono, R.1
  • 35
    • 0027678679 scopus 로고
    • The extraction of refined rules from knowledge based neural networks
    • Towell G.G., Shavlik J.W. The extraction of refined rules from knowledge based neural networks. Machine Learning. 13:1993.
    • (1993) Machine Learning , vol.13
    • Towell, G.G.1    Shavlik, J.W.2
  • 36
    • 0028529307 scopus 로고
    • Knowledge-based artificial neural networks
    • Towell G.G., Shavlik J.W. Knowledge-based artificial neural networks. Artificial Intelligence. 70:1994;119-165.
    • (1994) Artificial Intelligence , vol.70 , pp. 119-165
    • Towell, G.G.1    Shavlik, J.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.