-
1
-
-
84858216564
-
Long noncontractile tail machines of bacteriophages
-
Davidson AR, Cardarelli L, Pell LG, Radford DR, Maxwell KL. 2012. Long noncontractile tail machines of bacteriophages. Adv Exp Med Biol 726:115–142. http://dx.doi.org/10.1007/978-1-4614-0980-9_6.
-
(2012)
Adv Exp Med Biol
, vol.726
, pp. 115-142
-
-
Davidson, A.R.1
Cardarelli, L.2
Pell, L.G.3
Radford, D.R.4
Maxwell, K.L.5
-
2
-
-
33746931256
-
Bacteriophage T5 structure reveals similarities with HK97 and T4 suggesting evolutionary relationships
-
Effantin G, Boulanger P, Neumann E, Letellier L, Conway JF. 2006. Bacteriophage T5 structure reveals similarities with HK97 and T4 suggesting evolutionary relationships. J Mol Biol 361:993–1002. http://dx.doi.org/10.1016/j.jmb.2006.06.081.
-
(2006)
J Mol Biol
, vol.361
, pp. 993-1002
-
-
Effantin, G.1
Boulanger, P.2
Neumann, E.3
Letellier, L.4
Conway, J.F.5
-
3
-
-
1942533523
-
Molecular architecture of the prolate head of bacteriophage T4
-
Fokine A, Chipman PR, Leiman PG, Mesyanzhinov VV, Rao VB, Rossmann MG. 2004. Molecular architecture of the prolate head of bacteriophage T4. Proc Natl Acad Sci U S A 101:6003-6008. http://dx.doi.org/10.1073/pnas.0400444101.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 6003-6008
-
-
Fokine, A.1
Chipman, P.R.2
Leiman, P.G.3
Mesyanzhinov, V.V.4
Rao, V.B.5
Rossmann, M.G.6
-
4
-
-
17044395121
-
Conservation of the capsid structure in tailed dsDNA bacteriophages: The pseudoatomic structure of phi29
-
Morais MC, Choi KH, Koti JS, Chipman PR, Anderson DL, Rossmann MG. 2005. Conservation of the capsid structure in tailed dsDNA bacteriophages: the pseudoatomic structure of phi29. Mol Cell 18: 149–159. http://dx.doi.org/10.1016/j.molcel.2005.03.013.
-
(2005)
Mol Cell
, vol.18
, pp. 149-159
-
-
Morais, M.C.1
Choi, K.H.2
Koti, J.S.3
Chipman, P.R.4
Erson, D.L.5
Rossmann, M.G.6
-
5
-
-
77957752176
-
The solution structure of the C-terminal Ig-like domain of the bacteriophage lambda tail tube protein
-
Pell LG, Gasmi-Seabrook GM, Morais M, Neudecker P, Kanelis V, Bona D, Donaldson LW, Edwards AM, Howell PL, Davidson AR, Maxwell KL. 2010. The solution structure of the C-terminal Ig-like domain of the bacteriophage lambda tail tube protein. J Mol Biol 403:468–479. http://dx.doi.org/10.1016/j.jmb.2010.08.044.
-
(2010)
J Mol Biol
, vol.403
, pp. 468-479
-
-
Pell, L.G.1
Gasmi-Seabrook, G.M.2
Morais, M.3
Neudecker, P.4
Kanelis, V.5
Bona, D.6
Donaldson, L.W.7
Edwards, A.M.8
Howell, P.L.9
Davidson, A.R.10
Maxwell, K.L.11
-
6
-
-
34547732899
-
Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection
-
Plisson C, White HE, Auzat I, Zafarani A, São-José C, Lhuillier S, Tavares P, Orlova EV. 2007. Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. EMBO J 26:3720-3728. http://dx.doi.org/10.1038/sj.emboj.7601786.
-
(2007)
EMBO J
, vol.26
, pp. 3720-3728
-
-
Plisson, C.1
White, H.E.2
Auzat, I.3
Zafarani, A.4
São-José, C.5
Lhuillier, S.6
Tavares, P.7
Orlova, E.V.8
-
7
-
-
84897114412
-
OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella
-
Parent KN, Erb ML, Cardone G, Nguyen K, Gilcrease EB, Porcek NB, Pogliano J, Baker TS, Casjens SR. 2014. OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella. Mol Microbiol 92: 47–60. http://dx.doi.org/10.1111/mmi.12536.
-
(2014)
Mol Microbiol
, vol.92
, pp. 47-60
-
-
Parent, K.N.1
Erb, M.L.2
Cardone, G.3
Nguyen, K.4
Gilcrease, E.B.5
Porcek, N.B.6
Pogliano, J.7
Baker, T.S.8
Casjens, S.R.9
-
8
-
-
84873097195
-
The bacteriophage T7 virion undergoes extensive structural remodeling during infection
-
Hu B, Margolin W, Molineux IJ, Liu J. 2013. The bacteriophage T7 virion undergoes extensive structural remodeling during infection. Science 339:576–579. http://dx.doi.org/10.1126/science.1231887.
-
(2013)
Science
, vol.339
, pp. 576-579
-
-
Hu, B.1
Margolin, W.2
Molineux, I.J.3
Liu, J.4
-
9
-
-
0041819526
-
Threedimensional structure of bacteriophage T4 baseplate
-
Kostyuchenko VA, Leiman PG, Chipman PR, Kanamaru S, van Raaij MJ, Arisaka F, Mesyanzhinov VV, Rossmann MG. 2003. Threedimensional structure of bacteriophage T4 baseplate. Nat Struct Biol 10: 688–693. http://dx.doi.org/10.1038/nsb970.
-
(2003)
Nat Struct Biol
, vol.10
, pp. 688-693
-
-
Kostyuchenko, V.A.1
Leiman, P.G.2
Chipman, P.R.3
Kanamaru, S.4
Van Raaij, M.J.5
Arisaka, F.6
Mesyanzhinov, V.V.7
Rossmann, M.G.8
-
10
-
-
84927564262
-
Gram-positive phage-host interactions
-
Mahony J, van Sinderen D. 2015. Gram-positive phage-host interactions. Front Microbiol 6:61. http://dx.doi.org/10.3389/fmicb.2015.00061.
-
(2015)
Front Microbiol
, vol.6
, pp. 61
-
-
Mahony, J.1
Van Sinderen, D.2
-
11
-
-
65449163376
-
The tail sheath structure of bacteriophage T4: A molecular machine for infecting bacteria
-
Aksyuk AA, Leiman PG, Kurochkina LP, Shneider MM, Kostyuchenko VA, Mesyanzhinov VV, Rossmann MG. 2009. The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria. EMBO J 28:821–829. http://dx.doi.org/10.1038/emboj.2009.36.
-
(2009)
EMBO J
, vol.28
, pp. 821-829
-
-
Aksyuk, A.A.1
Leiman, P.G.2
Kurochkina, L.P.3
Shneider, M.M.4
Kostyuchenko, V.A.5
Mesyanzhinov, V.V.6
Rossmann, M.G.7
-
12
-
-
0037203891
-
Structure of the cellpuncturing device of bacteriophage T4
-
Kanamaru S, Leiman PG, Kostyuchenko VA, Chipman PR, Mesyanzhinov VV, Arisaka F, Rossmann MG. 2002. Structure of the cellpuncturing device of bacteriophage T4. Nature 415:553–557. http://dx.doi.org/10.1038/415553a.
-
(2002)
Nature
, vol.415
, pp. 553-557
-
-
Kanamaru, S.1
Leiman, P.G.2
Kostyuchenko, V.A.3
Chipman, P.R.4
Mesyanzhinov, V.V.5
Arisaka, F.6
Rossmann, M.G.7
-
13
-
-
34447620875
-
The structures of bacteriophages K1E and K1-5 explain processive degradation of polysaccharide capsules and evolution of new host specificities
-
Leiman PG, Battisti AJ, Bowman VD, Stummeyer K, Mühlenhoff M, Gerardy-Schahn R, Scholl D, Molineux IJ. 2007. The structures of bacteriophages K1E and K1-5 explain processive degradation of polysaccharide capsules and evolution of new host specificities. J Mol Biol 371: 836–849. http://dx.doi.org/10.1016/j.jmb.2007.05.083.
-
(2007)
J Mol Biol
, vol.371
, pp. 836-849
-
-
Leiman, P.G.1
Battisti, A.J.2
Bowman, V.D.3
Stummeyer, K.4
Mühlenhoff, M.5
Gerardy-Schahn, R.6
Scholl, D.7
Molineux, I.J.8
-
14
-
-
0025991231
-
A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. Lactis C2
-
Valyasevi R, Sandine WE, Geller BL. 1991. A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. lactis C2. J Bacteriol 173:6095–6100.
-
(1991)
J Bacteriol
, vol.173
, pp. 6095-6100
-
-
Valyasevi, R.1
Sandine, W.E.2
Geller, B.L.3
-
15
-
-
8144231102
-
Identification of Lactococcus lactis genes required for bacteriophage adsorption
-
Dupont K, Janzen T, Vogensen FK, Josephsen J, Stuer-Lauridsen B. 2004. Identification of Lactococcus lactis genes required for bacteriophage adsorption. Appl Environ Microbiol 70:5825–5832. http://dx.doi.org/10.1128/AEM.70.10.5825-5832.2004.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 5825-5832
-
-
Dupont, K.1
Janzen, T.2
Vogensen, F.K.3
Josephsen, J.4
Stuer-Lauridsen, B.5
-
16
-
-
0015713398
-
Isolation of the bacteriophage lambda receptor from Escherichia coli
-
Randall-Hazelbauer L, Schwartz M. 1973. Isolation of the bacteriophage lambda receptor from Escherichia coli. J Bacteriol 116:1436–1446.
-
(1973)
J Bacteriol
, vol.116
, pp. 1436-1446
-
-
Randall-Hazelbauer, L.1
Schwartz, M.2
-
17
-
-
0032184024
-
Cloning of the J gene of bacteriophage lambda, expression and solubilization of the J protein: First in vitro studies on the interactions between J and LamB, its cell surface receptor
-
Wang J, Michel V, Hofnung M, Charbit A. 1998. Cloning of the J gene of bacteriophage lambda, expression and solubilization of the J protein: first in vitro studies on the interactions between J and LamB, its cell surface receptor. Res Microbiol 149:611-624. http://dx.doi.org/10.1016/S0923-2508(99)80009-6.
-
(1998)
Res Microbiol
, vol.149
, pp. 611-624
-
-
Wang, J.1
Michel, V.2
Hofnung, M.3
Charbit, A.4
-
18
-
-
0028875214
-
Calcium controls phage T5 infection at the level of the Escherichia coli cytoplasmic membrane
-
Bonhivers M, Letellier L. 1995. Calcium controls phage T5 infection at the level of the Escherichia coli cytoplasmic membrane. FEBS Lett 374: 169–173. http://dx.doi.org/10.1016/0014-5793(95)01101-J.
-
(1995)
FEBS Lett
, vol.374
, pp. 169-173
-
-
Bonhivers, M.1
Letellier, L.2
-
19
-
-
0036308517
-
Characterization of a high-affinity complex between the bacterial outer membrane protein FhuA and the phage T5 protein pb5
-
Plançon L, Janmot C, le Maire M, Desmadril M, Bonhivers M, Letellier L, Boulanger P. 2002. Characterization of a high-affinity complex between the bacterial outer membrane protein FhuA and the phage T5 protein pb5. J Mol Biol 318:557–569. http://dx.doi.org/10.1016/S0022 -2836(02)00089-X.
-
(2002)
J Mol Biol
, vol.318
, pp. 557-569
-
-
Plançon, L.1
Janmot, C.2
Le Maire, M.3
Desmadril, M.4
Bonhivers, M.5
Letellier, L.6
Boulanger, P.7
-
20
-
-
47249159073
-
Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB
-
Baptista C, Santos MA, São-José C. 2008. Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. J Bacteriol 190:4989-4996. http://dx.doi.org/10.1128/JB.00349-08.
-
(2008)
J Bacteriol
, vol.190
, pp. 4989-4996
-
-
Baptista, C.1
Santos, M.A.2
São-José, C.3
-
21
-
-
33744962964
-
The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage SPP1 DNA
-
São-José C, Lhuillier S, Lurz R, Melki R, Lepault J, Santos MA, Tavares P. 2006. The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage SPP1 DNA. J Biol Chem 281: 11464–11470. http://dx.doi.org/10.1074/jbc.M513625200.
-
(2006)
J Biol Chem
, vol.281
, pp. 11464-11470
-
-
São-José, C.1
Lhuillier, S.2
Lurz, R.3
Melki, R.4
Lepault, J.5
Santos, M.A.6
Tavares, P.7
-
22
-
-
78649817390
-
Structure and molecular assignment of lactococcal phage TP901-1 baseplate
-
Bebeacua C, Bron P, Lai L, Vegge CS, Brøndsted L, Spinelli S, Campanacci V, Veesler D, van Heel M, Cambillau C. 2010. Structure and molecular assignment of lactococcal phage TP901-1 baseplate. J Biol Chem 285:39079–39086. http://dx.doi.org/10.1074/jbc.M110.175646.
-
(2010)
J Biol Chem
, vol.285
, pp. 39079-39086
-
-
Bebeacua, C.1
Bron, P.2
Lai, L.3
Vegge, C.S.4
Brøndsted, L.5
Spinelli, S.6
Campanacci, V.7
Veesler, D.8
Van Heel, M.9
Cambillau, C.10
-
23
-
-
77951089914
-
Structure of lactococcal phage p2 baseplate and its mechanism of activation
-
Sciara G, Bebeacua C, Bron P, Tremblay D, Ortiz-Lombardia M, Lichière J, van Heel M, Campanacci V, Moineau S, Cambillau C. 2010. Structure of lactococcal phage p2 baseplate and its mechanism of activation. Proc Natl Acad Sci U S A 107:6852–6857. http://dx.doi.org/10.1073/pnas.1000232107.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 6852-6857
-
-
Sciara, G.1
Bebeacua, C.2
Bron, P.3
Tremblay, D.4
Ortiz-Lombardia, M.5
Lichière, J.6
Van Heel, M.7
Campanacci, V.8
Moineau, S.9
Cambillau, C.10
-
24
-
-
71049152941
-
Crystal structure and function of a DARPin neutralizing inhibitor of lactococcal phage TP901-1: Comparison of DARPin and camelid VHH binding mode
-
Veesler D, Dreier B, Blangy S, Lichière J, Tremblay D, Moineau S, Spinelli S, Tegoni M, Plückthun A, Campanacci V, Cambillau C. 2009. Crystal structure and function of a DARPin neutralizing inhibitor of lactococcal phage TP901-1: comparison of DARPin and camelid VHH binding mode. J Biol Chem 284:30718-30726. http://dx.doi.org/10.1074/jbc.M109.037812.
-
(2009)
J Biol Chem
, vol.284
, pp. 30718-30726
-
-
Veesler, D.1
Dreier, B.2
Blangy, S.3
Lichière, J.4
Tremblay, D.5
Moineau, S.6
Spinelli, S.7
Tegoni, M.8
Plückthun, A.9
Campanacci, V.10
Cambillau, C.11
-
25
-
-
84861843665
-
Structure of the phage TP901-1 1.8MDabaseplate suggests an alternative host adhesion mechanism
-
Veesler D, Spinelli S, Mahony J, Lichière J, Blangy S, Bricogne G, Legrand P, Ortiz-Lombardia M, Campanacci V, van Sinderen D, Cambillau C. 2012. Structure of the phage TP901-1 1.8MDabaseplate suggests an alternative host adhesion mechanism. Proc Natl Acad Sci U S A 109: 8954–8958. http://dx.doi.org/10.1073/pnas.1200966109.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 8954-8958
-
-
Veesler, D.1
Spinelli, S.2
Mahony, J.3
Lichière, J.4
Blangy, S.5
Bricogne, G.6
Legrand, P.7
Ortiz-Lombardia, M.8
Campanacci, V.9
Van Sinderen, D.10
Cambillau, C.11
-
26
-
-
0020374670
-
Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4
-
Yu F, Mizushima S. 1982. Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. J Bacteriol 151:718–722.
-
(1982)
J Bacteriol
, vol.151
, pp. 718-722
-
-
Yu, F.1
Mizushima, S.2
-
27
-
-
78650549528
-
Structure of the bacteriophage T4 long tail fiber receptor-binding tip
-
Bartual SG, Otero JM, Garcia-Doval C, Llamas-Saiz AL, Kahn R, Fox GC, van Raaij MJ. 2010. Structure of the bacteriophage T4 long tail fiber receptor-binding tip. Proc Natl Acad Sci U S A 107:20287–20292. http://dx.doi.org/10.1073/pnas.1011218107.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 20287-20292
-
-
Bartual, S.G.1
Otero, J.M.2
Garcia-Doval, C.3
Llamas-Saiz, A.L.4
Kahn, R.5
Fox, G.C.6
Van Raaij, M.J.7
-
29
-
-
78649536914
-
Morphogenesis of the T4 tail and tail fibers
-
Leiman PG, Arisaka F, van Raaij MJ, Kostyuchenko VA, Aksyuk AA, Kanamaru S, Rossmann MG. 2010. Morphogenesis of the T4 tail and tail fibers. Virol J 7:355. http://dx.doi.org/10.1186/1743-422X-7-355.
-
(2010)
Virol J
, vol.7
, pp. 355
-
-
Leiman, P.G.1
Arisaka, F.2
Van Raaij, M.J.3
Kostyuchenko, V.A.4
Aksyuk, A.A.5
Kanamaru, S.6
Rossmann, M.G.7
-
30
-
-
0023109683
-
Receptor specificity of the short tail fibres (Gp12) of T-even type Escherichia coli phages
-
Riede I. 1987. Receptor specificity of the short tail fibres (gp12) of T-even type Escherichia coli phages. Mol Gen Genet 206:110-115. http://dx.doi.org/10.1007/BF00326544.
-
(1987)
Mol Gen Genet
, vol.206
, pp. 110-115
-
-
Riede, I.1
-
31
-
-
84880622625
-
Biodiversity of lactococcal bacteriophages isolated from 3 Gouda-type cheese-producing plants
-
Murphy J, Royer B, Mahony J, Hoyles L, Heller K, Neve H, Bonestroo M, Nauta A, van Sinderen D. 2013. Biodiversity of lactococcal bacteriophages isolated from 3 Gouda-type cheese-producing plants. J Dairy Sci 96:4945–4957. http://dx.doi.org/10.3168/jds.2013-6748.
-
(2013)
J Dairy Sci
, vol.96
, pp. 4945-4957
-
-
Murphy, J.1
Royer, B.2
Mahony, J.3
Hoyles, L.4
Heller, K.5
Neve, H.6
Bonestroo, M.7
Nauta, A.8
Van Sinderen, D.9
-
33
-
-
33745126631
-
Biodiversity and classification of lactococcal phages
-
Deveau H, Labrie SJ, Chopin MC, Moineau S. 2006. Biodiversity and classification of lactococcal phages. Appl Environ Microbiol 72: 4338–4346. http://dx.doi.org/10.1128/AEM.02517-05.
-
(2006)
Appl Environ Microbiol
, vol.72
, pp. 4338-4346
-
-
Deveau, H.1
Labrie, S.J.2
Chopin, M.C.3
Moineau, S.4
-
34
-
-
79960037438
-
Bacteriophages in milk fermentations: Diversity fluctuations of normal and failed fermentations
-
Kleppen HP, Bang T, Nes IF, Holo H. 2011. Bacteriophages in milk fermentations: diversity fluctuations of normal and failed fermentations. Int Dairy J 21:592–600. http://dx.doi.org/10.1016/j.idairyj.2011.02.010.
-
(2011)
Int Dairy J
, vol.21
, pp. 592-600
-
-
Kleppen, H.P.1
Bang, T.2
Nes, I.F.3
Holo, H.4
-
35
-
-
84863217464
-
Population genomics and phylogeography of an Australian dairy factory derived lytic bacteriophage
-
Castro-Nallar E, Chen H, Gladman S, Moore SC, Seemann T, Powell IB, Hillier A, Crandall KA, Chandry PS. 2012. Population genomics and phylogeography of an Australian dairy factory derived lytic bacteriophage. Genome Biol Evol 4:382–393. http://dx.doi.org/10.1093/gbe/evs017.
-
(2012)
Genome Biol Evol
, vol.4
, pp. 382-393
-
-
Castro-Nallar, E.1
Chen, H.2
Gladman, S.3
Moore, S.C.4
Seemann, T.5
Powell, I.B.6
Hillier, A.7
Crandall, K.A.8
Chandry, P.S.9
-
36
-
-
1542499580
-
Isolation and characterization of lactococcal bacteriophages from cultured buttermilk plants in the United States
-
Moineau S, Borkaev M, Holler BJ, Walker SA, Kondo JK, Vedamuthu ER, Vandenbergh PA. 1996. Isolation and characterization of lactococcal bacteriophages from cultured buttermilk plants in the United States. J Dairy Sci 79:2104-2111. http://dx.doi.org/10.3168/jds.S0022-0302(96)76584-0.
-
(1996)
J Dairy Sci
, vol.79
, pp. 2104-2111
-
-
Moineau, S.1
Borkaev, M.2
Holler, B.J.3
Walker, S.A.4
Kondo, J.K.5
Vedamuthu, E.R.6
Vandenbergh, P.A.7
-
37
-
-
68549098051
-
Evolution of Lactococcus lactis phages within a cheese factory
-
Rousseau GM, Moineau S. 2009. Evolution of Lactococcus lactis phages within a cheese factory. Appl Environ Microbiol 75:5336–5344. http://dx.doi.org/10.1128/AEM.00761-09.
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 5336-5344
-
-
Rousseau, G.M.1
Moineau, S.2
-
38
-
-
77951235025
-
Cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle
-
Chapot-Chartier MP, Vinogradov E, Sadovskaya I, Andre G, Mistou MY, Trieu-Cuot P, Furlan S, Bidnenko E, Courtin P, Péchoux C, Hols P, Dufrêne YF, Kulakauskas S. 2010. Cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle. J Biol Chem 285: 10464–10471. http://dx.doi.org/10.1074/jbc.M109.082958.
-
(2010)
J Biol Chem
, vol.285
, pp. 10464-10471
-
-
Chapot-Chartier, M.P.1
Vinogradov, E.2
Sadovskaya, I.3
Re, G.4
Mistou, M.Y.5
Trieu-Cuot, P.6
Furlan, S.7
Bidnenko, E.8
Courtin, P.9
Péchoux, C.10
Hols, P.11
Dufrêne, Y.F.12
Kulakauskas, S.13
-
39
-
-
84903975407
-
Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity
-
Ainsworth S, Sadovskaya I, Vinogradov E, Courtin P, Guerardel Y, Mahony J, Grard T, Cambillau C, Chapot-Chartier MP, van Sinderen D. 2014. Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity. mBio 5:e00880-14. http://dx.doi.org/10.1128/mBio.00880-14.
-
(2014)
Mbio
, vol.5
-
-
Ainsworth, S.1
Sadovskaya, I.2
Vinogradov, E.3
Courtin, P.4
Guerardel, Y.5
Mahony, J.6
Grard, T.7
Cambillau, C.8
Chapot-Chartier, M.P.9
Van Sinderen, D.10
-
40
-
-
84901352128
-
Molecular insights on the recognition of a Lactococcus lactis cell wall pellicle by the phage 1358 receptor binding protein
-
Farenc C, Spinelli S, Vinogradov E, Tremblay D, Blangy S, Sadovskaya I, Moineau S, Cambillau C. 2014. Molecular insights on the recognition of a Lactococcus lactis cell wall pellicle by the phage 1358 receptor binding protein. J Virol 88:7005–7015. http://dx.doi.org/10.1128/JVI.00739-14.
-
(2014)
J Virol
, vol.88
, pp. 7005-7015
-
-
Farenc, C.1
Spinelli, S.2
Vinogradov, E.3
Tremblay, D.4
Blangy, S.5
Sadovskaya, I.6
Moineau, S.7
Cambillau, C.8
-
41
-
-
33748480449
-
Crystal structure of the receptorbinding protein head domain from Lactococcus lactis phage bIL170
-
Ricagno S, Campanacci V, Blangy S, Spinelli S, Tremblay D, Moineau S, Tegoni M, Cambillau C. 2006. Crystal structure of the receptorbinding protein head domain from Lactococcus lactis phage bIL170. J Virol 80:9331–9335. http://dx.doi.org/10.1128/JVI.01160-06.
-
(2006)
J Virol
, vol.80
, pp. 9331-9335
-
-
Ricagno, S.1
Campanacci, V.2
Blangy, S.3
Spinelli, S.4
Tremblay, D.5
Moineau, S.6
Tegoni, M.7
Cambillau, C.8
-
42
-
-
33744900391
-
Modular structure of the receptor binding proteins of Lactococcus lactis phages. The RBP structure of the temperate phage TP901-1
-
Spinelli S, Campanacci V, Blangy S, Moineau S, Tegoni M, Cambillau C. 2006. Modular structure of the receptor binding proteins of Lactococcus lactis phages. The RBP structure of the temperate phage TP901-1. J Biol Chem 281:14256-14262. http://dx.doi.org/10.1074/jbc.M600666200.
-
(2006)
J Biol Chem
, vol.281
, pp. 14256-14262
-
-
Spinelli, S.1
Campanacci, V.2
Blangy, S.3
Moineau, S.4
Tegoni, M.5
Cambillau, C.6
-
43
-
-
80052696239
-
Unraveling lactococcal phage baseplate assembly by mass spectrometry
-
M111.009787
-
Shepherd DA, Veesler D, Lichière J, Ashcroft AE, Cambillau C. 2011. Unraveling lactococcal phage baseplate assembly by mass spectrometry. Mol Cell Proteomics 10:M111.009787. http://dx.doi.org/10.1074/mcp.M111.009787.
-
(2011)
Mol Cell Proteomics
, vol.10
-
-
Shepherd, D.A.1
Veesler, D.2
Lichière, J.3
Ashcroft, A.E.4
Cambillau, C.5
-
44
-
-
84923876281
-
Investigating the requirement for calcium during lactococcal phage infection
-
Mahony J, Tremblay DM, Labrie SJ, Moineau S, van Sinderen D. 2015. Investigating the requirement for calcium during lactococcal phage infection. Int J Food Microbiol 201:47–51. http://dx.doi.org/10.1016/j.ijfoodmicro.2015.02.017.
-
(2015)
Int J Food Microbiol
, vol.201
, pp. 47-51
-
-
Mahony, J.1
Tremblay, D.M.2
Labrie, S.J.3
Moineau, S.4
Van Sinderen, D.5
-
45
-
-
84876021998
-
Viral infection modulation and neutralization by camelid nanobodies
-
Desmyter A, Farenc C, Mahony J, Spinelli S, Bebeacua C, Blangy S, Veesler D, van Sinderen D, Cambillau C. 2013. Viral infection modulation and neutralization by camelid nanobodies. Proc Natl Acad Sci U S A 110:E1371–E1379. http://dx.doi.org/10.1073/pnas.1301336110.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. E1371-E1379
-
-
Desmyter, A.1
Farenc, C.2
Mahony, J.3
Spinelli, S.4
Bebeacua, C.5
Blangy, S.6
Veesler, D.7
Van Sinderen, D.8
Cambillau, C.9
-
46
-
-
84876940203
-
Complete genome of Lactococcus lactis subsp. Cremoris UC509.9, host for a model lactococcal P335 bacteriophage
-
Ainsworth S, Zomer A, de Jager V, Bottacini F, van Hijum SA, Mahony J, van Sinderen D. 2013. Complete genome of Lactococcus lactis subsp. cremoris UC509.9, host for a model lactococcal P335 bacteriophage. Genome Announc 1:e00119-12. http://dx.doi.org/10.1128/genomeA.00119-12.
-
(2013)
Genome Announc
, vol.1
-
-
Ainsworth, S.1
Zomer, A.2
De Jager, V.3
Bottacini, F.4
Van Hijum, S.A.5
Mahony, J.6
Van Sinderen, D.7
-
47
-
-
41449091781
-
A topological model of the baseplate of lactococcal phage Tuc2009
-
Sciara G, Blangy S, Siponen M, McGrath S, van Sinderen D, Tegoni M, Cambillau C, Campanacci V. 2008. A topological model of the baseplate of lactococcal phage Tuc2009. J Biol Chem 283:2716-2723. http://dx.doi.org/10.1074/jbc.M707533200.
-
(2008)
J Biol Chem
, vol.283
, pp. 2716-2723
-
-
Sciara, G.1
Blangy, S.2
Siponen, M.3
McGrath, S.4
Van Sinderen, D.5
Tegoni, M.6
Cambillau, C.7
Campanacci, V.8
-
48
-
-
84880610836
-
Structure and functional analysis of the host recognition device of lactococcal phage Tuc2009
-
Collins B, Bebeacua C, Mahony J, Blangy S, Douillard FP, Veesler D, Cambillau C, van Sinderen D. 2013. Structure and functional analysis of the host recognition device of lactococcal phage Tuc2009. J Virol 87: 8429–8440. http://dx.doi.org/10.1128/JVI.00907-13.
-
(2013)
J Virol
, vol.87
, pp. 8429-8440
-
-
Collins, B.1
Bebeacua, C.2
Mahony, J.3
Blangy, S.4
Douillard, F.P.5
Veesler, D.6
Cambillau, C.7
Van Sinderen, D.8
-
50
-
-
34548232365
-
Inference of macromolecular assemblies from crystalline state
-
Krissinel E, Henrick K. 2007. Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797. http://dx.doi.org/10.1016/j.jmb.2007.05.022.
-
(2007)
J Mol Biol
, vol.372
, pp. 774-797
-
-
Krissinel, E.1
Henrick, K.2
-
51
-
-
56649103902
-
Searching protein structure databases with DaliLite v.3
-
Holm L, Kääriäinen S, Rosenström P, Schenkel A. 2008. Searching protein structure databases with DaliLite v.3. Bioinformatics 24: 2780–2781. http://dx.doi.org/10.1093/bioinformatics/btn507.
-
(2008)
Bioinformatics
, vol.24
, pp. 2780-2781
-
-
Holm, L.1
Kääriäinen, S.2
Rosenström, P.3
Schenkel, A.4
-
52
-
-
73449121072
-
A TNF-like trimeric lectin domain from Burkholderia cenocepacia with specificity for fucosylated human histo-blood group antigens
-
Sulák O, Cioci G, Delia M, Lahmann M, Varrot A, Imberty A, Wimmerová M. 2010. A TNF-like trimeric lectin domain from Burkholderia cenocepacia with specificity for fucosylated human histo-blood group antigens. Structure 18:59–72. http://dx.doi.org/10.1016/j.str.2009.10.021.
-
(2010)
Structure
, vol.18
, pp. 59-72
-
-
Sulák, O.1
Cioci, G.2
Delia, M.3
Lahmann, M.4
Varrot, A.5
Imberty, A.6
Wimmerová, M.7
-
53
-
-
30044442097
-
Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses
-
Spinelli S, Desmyter A, Verrips CT, de Haard HJ, Moineau S, Cambillau C. 2006. Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses. Nat Struct Mol Biol 13:85-89. http://dx.doi.org/10.1038/nsmb1029.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 85-89
-
-
Spinelli, S.1
Desmyter, A.2
Verrips, C.T.3
De Haard, H.J.4
Moineau, S.5
Cambillau, C.6
-
54
-
-
77954021789
-
Solution and electron microscopy characterization of lactococcal phage baseplates expressed in Escherichia coli
-
Campanacci V, Veesler D, Lichière J, Blangy S, Sciara G, Moineau S, van Sinderen D, Bron P, Cambillau C. 2010. Solution and electron microscopy characterization of lactococcal phage baseplates expressed in Escherichia coli. J Struct Biol 172:75-84. http://dx.doi.org/10.1016/j.jsb.2010.02.007.
-
(2010)
J Struct Biol
, vol.172
, pp. 75-84
-
-
Campanacci, V.1
Veesler, D.2
Lichière, J.3
Blangy, S.4
Sciara, G.5
Moineau, S.6
Van Sinderen, D.7
Bron, P.8
Cambillau, C.9
-
56
-
-
33846426122
-
Solving structures of protein complexes by molecular replacement with Phaser
-
McCoy AJ. 2007. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr D Biol Crystallogr 63:32–41. http://dx.doi.org/10.1107/S0907444906045975.
-
(2007)
Acta Crystallogr D Biol Crystallogr
, vol.63
, pp. 32-41
-
-
McCoy, A.J.1
-
57
-
-
4444221565
-
UCSF Chimera—a visualization system for exploratory research and analysis
-
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. http://dx.doi.org/10.1002/jcc.20084.
-
(2004)
J Comput Chem
, vol.25
, pp. 1605-1612
-
-
Pettersen, E.F.1
Goddard, T.D.2
Huang, C.C.3
Couch, G.S.4
Greenblatt, D.M.5
Meng, E.C.6
Ferrin, T.E.7
-
58
-
-
0036300988
-
Differential oligosaccharide recognition by evolutionarily-related beta-1,4 and beta-1,3 glucan-binding modules
-
Boraston AB, Nurizzo D, Notenboom V, Ducros V, Rose DR, Kilburn DG, Davies GJ. 2002. Differential oligosaccharide recognition by evolutionarily-related beta-1,4 and beta-1,3 glucan-binding modules. J Mol Biol 319:1143–1156. http://dx.doi.org/10.1016/S0022-2836(02)00374-1.
-
(2002)
J Mol Biol
, vol.319
, pp. 1143-1156
-
-
Boraston, A.B.1
Nurizzo, D.2
Notenboom, V.3
Ducros, V.4
Rose, D.R.5
Kilburn, D.G.6
Davies, G.J.7
-
59
-
-
34247624040
-
Molecular determinants for the recruitment of the ubiquitin-ligase MuRF-1 onto M-line titin
-
Mrosek M, Labeit D, Witt S, Heerklotz H, von Castelmur E, Labeit S, Mayans O. 2007. Molecular determinants for the recruitment of the ubiquitin-ligase MuRF-1 onto M-line titin. FASEB J 21:1383–1392. http://dx.doi.org/10.1096/fj.06-7644com.
-
(2007)
FASEB J
, vol.21
, pp. 1383-1392
-
-
Mrosek, M.1
Labeit, D.2
Witt, S.3
Heerklotz, H.4
Von Castelmur, E.5
Labeit, S.6
Mayans, O.7
-
60
-
-
84893707768
-
Structures and host-adhesion mechanisms of lactococcal siphophages
-
Spinelli S, Veesler D, Bebeacua C, Cambillau C. 2014. Structures and host-adhesion mechanisms of lactococcal siphophages. Front Microbiol 5:3. http://dx.doi.org/10.3389/fmicb.2014.00003.
-
(2014)
Front Microbiol
, vol.5
, pp. 3
-
-
Spinelli, S.1
Veesler, D.2
Bebeacua, C.3
Cambillau, C.4
-
61
-
-
84886286536
-
Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2
-
Bebeacua C, Tremblay D, Farenc C, Chapot-Chartier MP, Sadovskaya I, van Heel M, Veesler D, Moineau S, Cambillau C. 2013. Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2. J Virol 87:12302–12312. http://dx.doi.org/10.1128/JVI.02033-13.
-
(2013)
J Virol
, vol.87
, pp. 12302-12312
-
-
Bebeacua, C.1
Tremblay, D.2
Farenc, C.3
Chapot-Chartier, M.P.4
Sadovskaya, I.5
Van Heel, M.6
Veesler, D.7
Moineau, S.8
Cambillau, C.9
-
62
-
-
79953200183
-
Structure of bacteriophage phi29 head fibers has a supercoiled triple repeating helix-turn-helix motif
-
Xiang Y, Rossmann MG. 2011. Structure of bacteriophage phi29 head fibers has a supercoiled triple repeating helix-turn-helix motif. Proc Natl Acad Sci U S A 108:4806-4810. http://dx.doi.org/10.1073/pnas.1018097108.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 4806-4810
-
-
Xiang, Y.1
Rossmann, M.G.2
-
63
-
-
84908267578
-
Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis
-
Dieterle ME, Bowman C, Batthyany C, Lanzarotti E, Turjanski A, Hatfull G, Piuri M. 2014. Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis. Appl Environ Microbiol 80:7107–7121. http://dx.doi.org/10.1128/AEM.02771-14.
-
(2014)
Appl Environ Microbiol
, vol.80
, pp. 7107-7121
-
-
Dieterle, M.E.1
Bowman, C.2
Batthyany, C.3
Lanzarotti, E.4
Turjanski, A.5
Hatfull, G.6
Piuri, M.7
-
64
-
-
26844509944
-
Automated expression and solubility screening of His-tagged proteins in 96-well format
-
Vincentelli R, Canaan S, Offant J, Cambillau C, Bignon C. 2005. Automated expression and solubility screening of His-tagged proteins in 96-well format. Anal Biochem 346:77-84. http://dx.doi.org/10.1016/j.ab.2005.07.039.
-
(2005)
Anal Biochem
, vol.346
, pp. 77-84
-
-
Vincentelli, R.1
Canaan, S.2
Offant, J.3
Cambillau, C.4
Bignon, C.5
-
65
-
-
0037351701
-
Medium-scale structural genomics: Strategies for protein expression and crystallization
-
Vincentelli R, Bignon C, Gruez A, Canaan S, Sulzenbacher G, Tegoni M, Campanacci V, Cambillau C. 2003. Medium-scale structural genomics: strategies for protein expression and crystallization. Acc Chem Res 36:165–172. http://dx.doi.org/10.1021/ar010130s.
-
(2003)
Acc Chem Res
, vol.36
, pp. 165-172
-
-
Vincentelli, R.1
Bignon, C.2
Gruez, A.3
Canaan, S.4
Sulzenbacher, G.5
Tegoni, M.6
Campanacci, V.7
Cambillau, C.8
-
66
-
-
84894623293
-
A general protocol for the generation of nanobodies for structural biology
-
Pardon E, Laeremans T, Triest S, Rasmussen SG, Wohlkönig A, Ruf A, Muyldermans S, Hol WG, Kobilka BK, Steyaert J. 2014. A general protocol for the generation of nanobodies for structural biology. Nat Protoc 9:674–693. http://dx.doi.org/10.1038/nprot.2014.039.
-
(2014)
Nat Protoc
, vol.9
, pp. 674-693
-
-
Pardon, E.1
Laeremans, T.2
Triest, S.3
Rasmussen, S.G.4
Wohlkönig, A.5
Ruf, A.6
Muyldermans, S.7
Hol, W.G.8
Kobilka, B.K.9
Steyaert, J.10
-
67
-
-
61449174868
-
Camelid nanobodies raised against an integral membrane enzyme, nitric oxide reductase
-
Conrath K, Pereira AS, Martins CE, Timóteo CG, Tavares P, Spinelli S, Kinne J, Flaudrops C, Cambillau C, Muyldermans S, Moura I, Moura JJ, Tegoni M, Desmyter A. 2009. Camelid nanobodies raised against an integral membrane enzyme, nitric oxide reductase. Protein Sci 18: 619–628. http://dx.doi.org/10.1002/pro.69.
-
(2009)
Protein Sci
, vol.18
, pp. 619-628
-
-
Conrath, K.1
Pereira, A.S.2
Martins, C.E.3
Timóteo, C.G.4
Tavares, P.5
Spinelli, S.6
Kinne, J.7
Flaudrops, C.8
Cambillau, C.9
Muyldermans, S.10
Moura, I.11
Moura, J.J.12
Tegoni, M.13
Desmyter, A.14
-
70
-
-
34447508216
-
Phaser crystallographic software
-
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007. Phaser crystallographic software. J Appl Crystallogr 40: 658–674. http://dx.doi.org/10.1107/S0021889807021206.
-
(2007)
J Appl Crystallogr
, vol.40
, pp. 658-674
-
-
McCoy, A.J.1
Grosse-Kunstleve, R.W.2
Adams, P.D.3
Winn, M.D.4
Storoni, L.C.5
Read, R.J.6
-
71
-
-
77950798648
-
Recent developments in classical density modification
-
Cowtan K. 2010. Recent developments in classical density modification. Acta Crystallogr D Biol Crystallogr 66:470-478. http://dx.doi.org/10.1107/S090744490903947X.
-
(2010)
Acta Crystallogr D Biol Crystallogr
, vol.66
, pp. 470-478
-
-
Cowtan, K.1
-
72
-
-
33748337934
-
The buccaneer software for automated model building. 1. Tracing protein chains
-
Cowtan K. 2006. The buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62: 1002–1011. http://dx.doi.org/10.1107/S0907444906022116.
-
(2006)
Acta Crystallogr D Biol Crystallogr
, vol.62
, pp. 1002-1011
-
-
Cowtan, K.1
-
74
-
-
76449098262
-
PHENIX: A comprehensive pythonbased system for macromolecular structure solution
-
Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. 2010. PHENIX: a comprehensive pythonbased system for macromolecular structure solution. Acta CrystallogrD Biol Crystallogr 66:213–221. http://dx.doi.org/10.1107/S0907444909052925.
-
(2010)
Acta Crystallogrd Biol Crystallogr
, vol.66
, pp. 213-221
-
-
Adams, P.D.1
Afonine, P.V.2
Bunkóczi, G.3
Chen, V.B.4
Davis, I.W.5
Echols, N.6
Headd, J.J.7
Hung, L.W.8
Kapral, G.J.9
Grosse-Kunstleve, R.W.10
McCoy, A.J.11
Moriarty, N.W.12
Oeffner, R.13
Read, R.J.14
Richardson, D.C.15
Richardson, J.S.16
Terwilliger, T.C.17
Zwart, P.H.18
-
75
-
-
79953763877
-
REFMAC5 for the refinement of macromolecular crystal structures
-
Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367. http://dx.doi.org/10.1107/S0907444911001314.
-
(2011)
Acta Crystallogr D Biol Crystallogr
, vol.67
, pp. 355-367
-
-
Murshudov, G.N.1
Skubák, P.2
Lebedev, A.A.3
Pannu, N.S.4
Steiner, R.A.5
Nicholls, R.A.6
Winn, M.D.7
Long, F.8
Vagin, A.A.9
-
76
-
-
14844321328
-
Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT
-
Blanc E, Roversi P, Vonrhein C, Flensburg C, Lea SM, Bricogne G. 2004. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr D Biol Crystallogr 60: 2210–2221. http://dx.doi.org/10.1107/S0907444904016427.
-
(2004)
Acta Crystallogr D Biol Crystallogr
, vol.60
, pp. 2210-2221
-
-
Blanc, E.1
Roversi, P.2
Vonrhein, C.3
Flensburg, C.4
Lea, S.M.5
Bricogne, G.6
-
77
-
-
84929190604
-
The targeted recognition of Lactococcus lactis phages to their polysaccharide receptors
-
McCabe O, Spinelli S, Farenc C, Labbé M, Tremblay D, Blangy S, Oscarson S, Moineau S, Cambillau C. 2015. The targeted recognition of Lactococcus lactis phages to their polysaccharide receptors. Mol Microbiol 96:875–886 http://dx.doi.org/10.1111/mmi.12978.
-
(2015)
Mol Microbiol
, vol.96
, pp. 875-886
-
-
McCabe, O.1
Spinelli, S.2
Farenc, C.3
Labbé, M.4
Tremblay, D.5
Blangy, S.6
Oscarson, S.7
Moineau, S.8
Cambillau, C.9
|