메뉴 건너뛰기




Volumn 42, Issue , 2016, Pages 30-39

Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICALS; ENZYMATIC HYDROLYSIS; ENZYME ACTIVITY; FEEDSTOCKS; FERMENTATION; HYDROLYSIS; SACCHARIFICATION;

EID: 84960130887     PISSN: 09581669     EISSN: 18790429     Source Type: Journal    
DOI: 10.1016/j.copbio.2016.02.031     Document Type: Review
Times cited : (187)

References (67)
  • 1
    • 84875531988 scopus 로고    scopus 로고
    • Biobased chemicals: the convergence of green chemistry with industrial biotechnology
    • Philp J.C., Ritchie R.J., Allan J.E.M. Biobased chemicals: the convergence of green chemistry with industrial biotechnology. Trends Biotechnol 2013, 31:219-222.
    • (2013) Trends Biotechnol , vol.31 , pp. 219-222
    • Philp, J.C.1    Ritchie, R.J.2    Allan, J.E.M.3
  • 2
  • 3
    • 77957864657 scopus 로고    scopus 로고
    • Chemical synthesis of fully biomass-based poly(butylene succinate) from inedible-biomass-based furfural and evaluation of its biomass carbon ratio
    • Tachibana Y., Masuda T., Funabashi M., Kunioka M. Chemical synthesis of fully biomass-based poly(butylene succinate) from inedible-biomass-based furfural and evaluation of its biomass carbon ratio. Biomacromolecules 2010, 11:2760-2765.
    • (2010) Biomacromolecules , vol.11 , pp. 2760-2765
    • Tachibana, Y.1    Masuda, T.2    Funabashi, M.3    Kunioka, M.4
  • 5
    • 85027952469 scopus 로고    scopus 로고
    • Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept
    • Menon V., Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust 2012, 38:522-550.
    • (2012) Prog Energy Combust , vol.38 , pp. 522-550
    • Menon, V.1    Rao, M.2
  • 6
    • 84905121522 scopus 로고    scopus 로고
    • A comprehensive ligninolytic pre-treatment approach from lignocellulose green biotechnology to produce bio-ethanol
    • Asgher M., Bashir F., Iqbal H.M.N. A comprehensive ligninolytic pre-treatment approach from lignocellulose green biotechnology to produce bio-ethanol. Chem Eng Res Des 2014, 92:1571-1578.
    • (2014) Chem Eng Res Des , vol.92 , pp. 1571-1578
    • Asgher, M.1    Bashir, F.2    Iqbal, H.M.N.3
  • 7
    • 84908626295 scopus 로고    scopus 로고
    • Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing
    • den Haan R., van Rensburg E., Rose S.H., Görgens J.F., van Zyl W.H. Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr Opin Biotech 2015, 33:32-38.
    • (2015) Curr Opin Biotech , vol.33 , pp. 32-38
    • Den Haan, R.1    Van Rensburg, E.2    Rose, S.H.3    Görgens, J.F.4    Van Zyl, W.H.5
  • 8
    • 0042443510 scopus 로고    scopus 로고
    • Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks
    • Wingren A., Galbe M., Zacchi G. Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Progr 2003, 19:1109-1117.
    • (2003) Biotechnol Progr , vol.19 , pp. 1109-1117
    • Wingren, A.1    Galbe, M.2    Zacchi, G.3
  • 9
    • 84903720028 scopus 로고    scopus 로고
    • Economic feasibility of a pilot-scale fermentative succinic acid production from bakery wastes
    • Lam K.F., Leung C.C.J., Lei H.M., Lin C.S.K. Economic feasibility of a pilot-scale fermentative succinic acid production from bakery wastes. Food Bioprod Process 2014, 92:282-290.
    • (2014) Food Bioprod Process , vol.92 , pp. 282-290
    • Lam, K.F.1    Leung, C.C.J.2    Lei, H.M.3    Lin, C.S.K.4
  • 10
    • 84893840184 scopus 로고    scopus 로고
    • A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential
    • Singh R., Shukla A., Tiwari S., Srivastava M. A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sust Energ Rev 2014, 32:713-728.
    • (2014) Renew Sust Energ Rev , vol.32 , pp. 713-728
    • Singh, R.1    Shukla, A.2    Tiwari, S.3    Srivastava, M.4
  • 12
    • 84907167589 scopus 로고    scopus 로고
    • Succinic acid production by fermentation of Jerusalem artichoke tuber hydrolysate with Actinobacillus succinogenes 130Z
    • Gunnarsson I.B., Karakashev D., Angelidaki I. Succinic acid production by fermentation of Jerusalem artichoke tuber hydrolysate with Actinobacillus succinogenes 130Z. Ind Crop Prod 2014, 62:125-129.
    • (2014) Ind Crop Prod , vol.62 , pp. 125-129
    • Gunnarsson, I.B.1    Karakashev, D.2    Angelidaki, I.3
  • 13
    • 84877271686 scopus 로고    scopus 로고
    • Improved succinate production by metabolic engineering
    • Cheng K.K., Wang G.Y., Zeng J., Zhang J.A. Improved succinate production by metabolic engineering. Biomed Res Int 2013, 2013. Article No. 538790.
    • (2013) Biomed Res Int , vol.2013
    • Cheng, K.K.1    Wang, G.Y.2    Zeng, J.3    Zhang, J.A.4
  • 16
    • 84907958752 scopus 로고    scopus 로고
    • L-Lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture
    • Wakai S., Yoshie T., Asai-Nakashima N., Yamada R., Ogino C., Tsutsumi H., Hata Y., Kondo A. l-Lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture. Bioresour Technol 2014, 173:376-383.
    • (2014) Bioresour Technol , vol.173 , pp. 376-383
    • Wakai, S.1    Yoshie, T.2    Asai-Nakashima, N.3    Yamada, R.4    Ogino, C.5    Tsutsumi, H.6    Hata, Y.7    Kondo, A.8
  • 17
    • 84891435015 scopus 로고    scopus 로고
    • Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions
    • Tsuge Y., Tateno T., Sasaki K., Hasunuma T., Tanaka T., Kondo A. Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions. AMB Express 2013, 3.
    • (2013) AMB Express , pp. 3
    • Tsuge, Y.1    Tateno, T.2    Sasaki, K.3    Hasunuma, T.4    Tanaka, T.5    Kondo, A.6
  • 18
    • 84904812927 scopus 로고    scopus 로고
    • 2-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing
    • 2-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing. Sci Rep 2014, 4. Article No. 5819.
    • (2014) Sci Rep , vol.4
    • Lee, J.1    Sim, S.J.2    Bott, M.3    Um, Y.4    Oh, M.K.5    Woo, H.M.6
  • 19
    • 84899569751 scopus 로고    scopus 로고
    • Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111
    • Chen C.X., Ding S.P., Wang D.Z., Li Z.M., Ye Q. Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111. Bioresour Technol 2014, 163:100-105.
    • (2014) Bioresour Technol , vol.163 , pp. 100-105
    • Chen, C.X.1    Ding, S.P.2    Wang, D.Z.3    Li, Z.M.4    Ye, Q.5
  • 20
    • 58549095930 scopus 로고    scopus 로고
    • Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase
    • Tateno T., Okada Y., Tsuchidate T., Tanaka T., Fukuda H., Kondo A. Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 2009, 82:115-121.
    • (2009) Appl Microbiol Biotechnol , vol.82 , pp. 115-121
    • Tateno, T.1    Okada, Y.2    Tsuchidate, T.3    Tanaka, T.4    Fukuda, H.5    Kondo, A.6
  • 21
    • 84943155424 scopus 로고    scopus 로고
    • Production of optically pure l-lactic acid from lignocellulosic hydrolysate by using a newly isolated and d-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain
    • Kuo Y.C., Yuan S.F., Wang C.A., Huang Y.J., Guo G.L., Hwang W.S. Production of optically pure l-lactic acid from lignocellulosic hydrolysate by using a newly isolated and d-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain. Bioresour Technol 2015, 198:651-657.
    • (2015) Bioresour Technol , vol.198 , pp. 651-657
    • Kuo, Y.C.1    Yuan, S.F.2    Wang, C.A.3    Huang, Y.J.4    Guo, G.L.5    Hwang, W.S.6
  • 22
    • 84906996748 scopus 로고    scopus 로고
    • Efficient open fermentative production of polymer-grade l-lactate from sugarcane bagasse hydrolysate by thermotolerant Bacillus sp. strain P38
    • Peng L.L., Xie N.Z., Guo L., Wang L.M., Yu B., Ma Y.H. Efficient open fermentative production of polymer-grade l-lactate from sugarcane bagasse hydrolysate by thermotolerant Bacillus sp. strain P38. PLOS ONE 2014, 9. Article No. e107143.
    • (2014) PLOS ONE , vol.9
    • Peng, L.L.1    Xie, N.Z.2    Guo, L.3    Wang, L.M.4    Yu, B.5    Ma, Y.H.6
  • 23
    • 84923030175 scopus 로고    scopus 로고
    • High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition
    • Hu J.L., Zhang Z.T., Lin Y.X., Zhao S.M., Mei Y.X., Liang Y.X., Peng N. High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition. Bioresour Technol 2015, 182:251-257.
    • (2015) Bioresour Technol , vol.182 , pp. 251-257
    • Hu, J.L.1    Zhang, Z.T.2    Lin, Y.X.3    Zhao, S.M.4    Mei, Y.X.5    Liang, Y.X.6    Peng, N.7
  • 24
    • 84941650344 scopus 로고    scopus 로고
    • Simultaneous saccharification and fermentation of bagasse sulfite pulp to lactic acid by Bacillus coagulans CC17
    • Zhou J., Ouyang J., Zhang M., Yu H. Simultaneous saccharification and fermentation of bagasse sulfite pulp to lactic acid by Bacillus coagulans CC17. BioResource 2014, 9:2609-2620.
    • (2014) BioResource , vol.9 , pp. 2609-2620
    • Zhou, J.1    Ouyang, J.2    Zhang, M.3    Yu, H.4
  • 25
    • 84924054118 scopus 로고    scopus 로고
    • Production of lactic acid from the mixture of softwood pre-hydrolysate and paper mill sludge by simultaneous saccharification and fermentation
    • Shi S., Kang L., Lee Y.Y. Production of lactic acid from the mixture of softwood pre-hydrolysate and paper mill sludge by simultaneous saccharification and fermentation. Appl Biochem Biotechnol 2015, 175:2741-2754.
    • (2015) Appl Biochem Biotechnol , vol.175 , pp. 2741-2754
    • Shi, S.1    Kang, L.2    Lee, Y.Y.3
  • 26
    • 84875252770 scopus 로고    scopus 로고
    • Fermentative L-(+)-lactic acid production from non-sterilized rice washing drainage containing rice bran by a newly isolated lactic acid bacteria without any additions of nutrients
    • Watanabe M., Makino M., Kaku N., Koyama M., Nakamura K., Sasano K: Fermentative l-(+)-lactic acid production from non-sterilized rice washing drainage containing rice bran by a newly isolated lactic acid bacteria without any additions of nutrients. J Biosci Bioeng 2013, 115:449-452.
    • (2013) J Biosci Bioeng , vol.115 , pp. 449-452
    • Watanabe, M.1    Makino, M.2    Kaku, N.3    Koyama, M.4    Nakamura, K.5    Sasano, K.6
  • 27
    • 84943160293 scopus 로고    scopus 로고
    • Open fermentative production of l-lactic acid using white rice bran by simultaneous saccharification and fermentation
    • Wang Y., Cai D., He M.L., Wang Z., Qin P.Y., Tan T.W. Open fermentative production of l-lactic acid using white rice bran by simultaneous saccharification and fermentation. Bioresour Technol 2015, 198:664-672.
    • (2015) Bioresour Technol , vol.198 , pp. 664-672
    • Wang, Y.1    Cai, D.2    He, M.L.3    Wang, Z.4    Qin, P.Y.5    Tan, T.W.6
  • 28
    • 74149093182 scopus 로고    scopus 로고
    • D-Lactic acid production from cellooligosaccharides and beta-glucan using l-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum
    • Okano K., Zhang Q., Yoshida S., Tanaka T., Ogino C., Fukuda H., Kondo A. d-Lactic acid production from cellooligosaccharides and beta-glucan using l-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum. Appl Microbiol Biotechnol 2010, 85:643-650.
    • (2010) Appl Microbiol Biotechnol , vol.85 , pp. 643-650
    • Okano, K.1    Zhang, Q.2    Yoshida, S.3    Tanaka, T.4    Ogino, C.5    Fukuda, H.6    Kondo, A.7
  • 29
    • 84941012985 scopus 로고    scopus 로고
    • Efficient utilization of cassava pulp for succinate production by metabolically engineered Escherichia coli KJ122
    • Sawisit A., Jantama S.S., Kanchanatawee S., Jantama K. Efficient utilization of cassava pulp for succinate production by metabolically engineered Escherichia coli KJ122. Bioprocess Biosyst Eng 2015, 38:175-187.
    • (2015) Bioprocess Biosyst Eng , vol.38 , pp. 175-187
    • Sawisit, A.1    Jantama, S.S.2    Kanchanatawee, S.3    Jantama, K.4
  • 30
    • 84858958694 scopus 로고    scopus 로고
    • Engineering Escherichia coli for succinate production from hemicellulose via consolidated bioprocessing
    • Zheng Z.B., Chen T., Zhao M.N., Wang Z.W., Zhao X.M. Engineering Escherichia coli for succinate production from hemicellulose via consolidated bioprocessing. Microb Cell Fact 2012, 11. Article No. 37.
    • (2012) Microb Cell Fact , vol.11
    • Zheng, Z.B.1    Chen, T.2    Zhao, M.N.3    Wang, Z.W.4    Zhao, X.M.5
  • 33
    • 84872156620 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals
    • Park S.J., Kim E.Y., Noh W., Park H.M., Oh Y.H., Lee S.H., Song B.K., Jegal J., Lee S.Y. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metab Eng 2013, 16:42-47.
    • (2013) Metab Eng , vol.16 , pp. 42-47
    • Park, S.J.1    Kim, E.Y.2    Noh, W.3    Park, H.M.4    Oh, Y.H.5    Lee, S.H.6    Song, B.K.7    Jegal, J.8    Lee, S.Y.9
  • 34
    • 84942598369 scopus 로고    scopus 로고
    • Metabolic engineering of Yarrowia lipolytica for itaconic acid production
    • Blazeck J., Hill A., Jamoussi M., Pan A., Miller J., Alper H.S. Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metabol Eng 2015, 32:66-73.
    • (2015) Metabol Eng , vol.32 , pp. 66-73
    • Blazeck, J.1    Hill, A.2    Jamoussi, M.3    Pan, A.4    Miller, J.5    Alper, H.S.6
  • 35
    • 84942113876 scopus 로고    scopus 로고
    • Metabolic engineering of the mixed-acid fermentation pathway of Escherichia coli for anaerobic production of glutamate and itaconate
    • Vuoristo K.S., Mars A.E., Sangra J.V., Springer J., Eggink G., Sanders J.P., Weusthuis R.A. Metabolic engineering of the mixed-acid fermentation pathway of Escherichia coli for anaerobic production of glutamate and itaconate. AMB Express 2015, 5:61.
    • (2015) AMB Express , vol.5 , pp. 61
    • Vuoristo, K.S.1    Mars, A.E.2    Sangra, J.V.3    Springer, J.4    Eggink, G.5    Sanders, J.P.6    Weusthuis, R.A.7
  • 37
    • 0024055422 scopus 로고
    • Synthesis and properties of fluorine-containing aromatic polybenzoxazoles from bis(o-aminophenols) and aromatic diacid chlorides by the silylation method
    • Maruyama Y., Oishi Y., Kakimoto M., Imai Y. Synthesis and properties of fluorine-containing aromatic polybenzoxazoles from bis(o-aminophenols) and aromatic diacid chlorides by the silylation method. Macromolecules 1988, 21:2305-2309.
    • (1988) Macromolecules , vol.21 , pp. 2305-2309
    • Maruyama, Y.1    Oishi, Y.2    Kakimoto, M.3    Imai, Y.4
  • 40
    • 84877068174 scopus 로고    scopus 로고
    • P-Hydroxycinnamic acid production directly from cellulose using endoglucanase- and tyrosine ammonia lyase-expressing Streptomyces lividans
    • Kawai Y., Noda S., Ogino C., Takeshima Y., Okai N., Tanaka T., Kondo A. p-Hydroxycinnamic acid production directly from cellulose using endoglucanase- and tyrosine ammonia lyase-expressing Streptomyces lividans. Microb Cell Fact 2013, 12. Article No. 45.
    • (2013) Microb Cell Fact , vol.12
    • Kawai, Y.1    Noda, S.2    Ogino, C.3    Takeshima, Y.4    Okai, N.5    Tanaka, T.6    Kondo, A.7
  • 41
    • 84986254065 scopus 로고    scopus 로고
    • Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis
    • Rodriguez A., Kildegaard K.R., Li M., Borodina I., Nielsen J. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 2015, 31:181-188.
    • (2015) Metab Eng , vol.31 , pp. 181-188
    • Rodriguez, A.1    Kildegaard, K.R.2    Li, M.3    Borodina, I.4    Nielsen, J.5
  • 42
    • 84876676603 scopus 로고    scopus 로고
    • Engineering E. coli for caffeic acid biosynthesis from renewable sugars
    • Zhang H.R., Stephanopoulos G. Engineering E. coli for caffeic acid biosynthesis from renewable sugars. Appl Microbiol Biotechnol 2013, 97:3333-3341.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 3333-3341
    • Zhang, H.R.1    Stephanopoulos, G.2
  • 43
    • 84886239741 scopus 로고    scopus 로고
    • Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain
    • Huang Q., Lin Y.H., Yan Y.J. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain. Biotechnol Bioeng 2013, 110:3188-3196.
    • (2013) Biotechnol Bioeng , vol.110 , pp. 3188-3196
    • Huang, Q.1    Lin, Y.H.2    Yan, Y.J.3
  • 44
    • 84895567367 scopus 로고    scopus 로고
    • Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives
    • Furuya T., Kino K. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives. Appl Microbiol Biotechnol 2014, 98:1145-1154.
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 1145-1154
    • Furuya, T.1    Kino, K.2
  • 49
    • 84952989453 scopus 로고    scopus 로고
    • Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli
    • Okai N., Miyoshi T., Takeshima Y., Kuwahara H., Ogino C., Kondo A. Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli. Appl Microbiol Biotechnol 2015, 100:135-145.
    • (2015) Appl Microbiol Biotechnol , vol.100 , pp. 135-145
    • Okai, N.1    Miyoshi, T.2    Takeshima, Y.3    Kuwahara, H.4    Ogino, C.5    Kondo, A.6
  • 50
    • 69249092516 scopus 로고    scopus 로고
    • A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry
    • Chen G.Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 2009, 38:2434-2446.
    • (2009) Chem Soc Rev , vol.38 , pp. 2434-2446
    • Chen, G.Q.1
  • 51
    • 84904462990 scopus 로고    scopus 로고
    • Enhanced biosynthesis of poly(3-hydroxybutyrate) from potato starch by Bacillus cereus strain 64-INS in a laboratory-scale fermenter
    • Ali I., Jamil N. Enhanced biosynthesis of poly(3-hydroxybutyrate) from potato starch by Bacillus cereus strain 64-INS in a laboratory-scale fermenter. Prep Biochem Biotechnol 2014, 44:822-833.
    • (2014) Prep Biochem Biotechnol , vol.44 , pp. 822-833
    • Ali, I.1    Jamil, N.2
  • 52
    • 84895125832 scopus 로고    scopus 로고
    • Agrowaste-based polyhydroxyalkanoate (PHA) production using hydrolytic potential of Bacillus thuringiensis IAM 12077
    • Gowda V., Shivakumar S. Agrowaste-based polyhydroxyalkanoate (PHA) production using hydrolytic potential of Bacillus thuringiensis IAM 12077. Braz Arch Biol Technol 2014, 57:55-61.
    • (2014) Braz Arch Biol Technol , vol.57 , pp. 55-61
    • Gowda, V.1    Shivakumar, S.2
  • 53
    • 84899986180 scopus 로고    scopus 로고
    • Comparative study on the production of poly(3-hydroxybutyrate) by thermophilic Chelatococcus daeguensis TAD1: a good candidate for large-scale production
    • Xu F.Q., Huang S.B., Liu Y., Zhang Y.Q., Chen S.W. Comparative study on the production of poly(3-hydroxybutyrate) by thermophilic Chelatococcus daeguensis TAD1: a good candidate for large-scale production. Appl Microbiol Biotechnol 2014, 98:3965-3974.
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 3965-3974
    • Xu, F.Q.1    Huang, S.B.2    Liu, Y.3    Zhang, Y.Q.4    Chen, S.W.5
  • 55
    • 84874290996 scopus 로고    scopus 로고
    • Single-step production of polyhydroxybutyrate from starch by using α-amylase cell-surface displaying system of Corynebacterium glutamicum
    • Song Y.Y., Matsumoto K., Tanaka T., Kondo A., Taguchi S. Single-step production of polyhydroxybutyrate from starch by using α-amylase cell-surface displaying system of Corynebacterium glutamicum. J Biosci Bioeng 2013, 115:12-14.
    • (2013) J Biosci Bioeng , vol.115 , pp. 12-14
    • Song, Y.Y.1    Matsumoto, K.2    Tanaka, T.3    Kondo, A.4    Taguchi, S.5
  • 56
    • 84922383659 scopus 로고    scopus 로고
    • Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution
    • Oh Y.H., Lee S.H., Jang Y.A., Choi J.W., Hong K.S., Yu J.H., Shin J., Song B.K., Mastan S.G., David Y., et al. Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution. Bioresour Technol 2015, 181:283-290.
    • (2015) Bioresour Technol , vol.181 , pp. 283-290
    • Oh, Y.H.1    Lee, S.H.2    Jang, Y.A.3    Choi, J.W.4    Hong, K.S.5    Yu, J.H.6    Shin, J.7    Song, B.K.8    Mastan, S.G.9    David, Y.10
  • 57
    • 84901690883 scopus 로고    scopus 로고
    • Softwood hydrolysate as a carbon source for polyhydroxyalkanoate production
    • Bowers T., Vaidya A., Smith D.A., Lloyd-Jones G. Softwood hydrolysate as a carbon source for polyhydroxyalkanoate production. J Chem Technol Biotechnol 2014, 89:1030-1037.
    • (2014) J Chem Technol Biotechnol , vol.89 , pp. 1030-1037
    • Bowers, T.1    Vaidya, A.2    Smith, D.A.3    Lloyd-Jones, G.4
  • 58
    • 84938067741 scopus 로고    scopus 로고
    • Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock
    • Saratale G.D., Oh M.K. Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock. Int J Biol Macromol 2015, 80:627-635.
    • (2015) Int J Biol Macromol , vol.80 , pp. 627-635
    • Saratale, G.D.1    Oh, M.K.2
  • 60
    • 84908207255 scopus 로고    scopus 로고
    • Deletion of the pflA gene in Escherichia coli LS5218 and its effects on the production of polyhydroxyalkanoates using beechwood xylan as a feedstock
    • Salamanca-Cardona L., Scheel R.A., Lundgren B.R., Stipanovic A.J., Matsumoto K., Taguchi S., Nomura C.T. Deletion of the pflA gene in Escherichia coli LS5218 and its effects on the production of polyhydroxyalkanoates using beechwood xylan as a feedstock. Bioengineered 2014, 5:284-287.
    • (2014) Bioengineered , vol.5 , pp. 284-287
    • Salamanca-Cardona, L.1    Scheel, R.A.2    Lundgren, B.R.3    Stipanovic, A.J.4    Matsumoto, K.5    Taguchi, S.6    Nomura, C.T.7
  • 61
    • 84942905711 scopus 로고    scopus 로고
    • Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria
    • Salvachúa D., Karp E.M., Nimlos C.T., Vardon D.R., Beckham G.T. Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem 2015, 17:4951-4967.
    • (2015) Green Chem , vol.17 , pp. 4951-4967
    • Salvachúa, D.1    Karp, E.M.2    Nimlos, C.T.3    Vardon, D.R.4    Beckham, G.T.5
  • 62
    • 21044437674 scopus 로고    scopus 로고
    • ® from corn derived 1,3-propanediol
    • ® from corn derived 1,3-propanediol. J Polym Environ 2005, 13:159-167.
    • (2005) J Polym Environ , vol.13 , pp. 159-167
    • Kurian, J.V.1
  • 63
    • 33845733843 scopus 로고
    • Blends of bacterial and synthetic poly(beta-hydroxybutyrate) - Effect of tacticity on melting behavior
    • Pearce R., Jesudason J., Orts W., Marchessault R.H. Blends of bacterial and synthetic poly(beta-hydroxybutyrate) - Effect of tacticity on melting behavior. Polymer 1992, 33:4647-4649.
    • (1992) Polymer , vol.33 , pp. 4647-4649
    • Pearce, R.1    Jesudason, J.2    Orts, W.3    Marchessault, R.H.4
  • 64
    • 79960703445 scopus 로고    scopus 로고
    • Enhanced thermal conductivity of semi-aliphatic liquid crystalline polybenzoxazoles using magnetic orientation
    • Hasegawa M., Suyama N., Shimoyama N., Aoki H., Nunokawa T., Kimura T. Enhanced thermal conductivity of semi-aliphatic liquid crystalline polybenzoxazoles using magnetic orientation. Polym Int 2011, 60:1240-1247.
    • (2011) Polym Int , vol.60 , pp. 1240-1247
    • Hasegawa, M.1    Suyama, N.2    Shimoyama, N.3    Aoki, H.4    Nunokawa, T.5    Kimura, T.6
  • 65
    • 84905366023 scopus 로고    scopus 로고
    • From zero to hero - Production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum
    • Kind S., Neubauer S., Becker J., Yamamoto M., Volkert M., von Abendroth G., Zelder O., Wittmann C. From zero to hero - Production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng 2014, 25:113-123.
    • (2014) Metab Eng , vol.25 , pp. 113-123
    • Kind, S.1    Neubauer, S.2    Becker, J.3    Yamamoto, M.4    Volkert, M.5    von Abendroth, G.6    Zelder, O.7    Wittmann, C.8
  • 66
    • 25844505728 scopus 로고    scopus 로고
    • Consolidated bioprocessing of cellulosic biomass: an update
    • Lynd L.R., van Zyl W.H., McBride J.E., Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotech 2005, 16:577-583.
    • (2005) Curr Opin Biotech , vol.16 , pp. 577-583
    • Lynd, L.R.1    van Zyl, W.H.2    McBride, J.E.3    Laser, M.4
  • 67
    • 84865350728 scopus 로고    scopus 로고
    • Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae
    • Brennan T.C.R., Turner C.D., Krömer J.O., Nielsen L.K. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng 2012, 109:2513-2522.
    • (2012) Biotechnol Bioeng , vol.109 , pp. 2513-2522
    • Brennan, T.C.R.1    Turner, C.D.2    Krömer, J.O.3    Nielsen, L.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.