-
1
-
-
78650773077
-
A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks
-
Narendra V, Lytkin NI, Aliferis CF, Statnikov A. A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks. Genomics. 2011; 97(1):7-18.
-
(2011)
Genomics
, vol.97
, Issue.1
, pp. 7-18
-
-
Narendra, V.1
Lytkin, N.I.2
Aliferis, C.F.3
Statnikov, A.4
-
2
-
-
34547844096
-
Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data
-
Soranzo N, Bianconi G, Altafini C. Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics. 2007; 23(13):1640-1647.
-
(2007)
Bioinformatics
, vol.23
, Issue.13
, pp. 1640-1647
-
-
Soranzo, N.1
Bianconi, G.2
Altafini, C.3
-
3
-
-
68349161006
-
Reverse engineering of gene regulatory networks: a comparative study
-
Hache H, Lehrach H, Herwig R. Reverse engineering of gene regulatory networks: a comparative study. EURASIP J Bioinformatics Syst Biol. 2009; 2009:8-1812.
-
(2009)
EURASIP J Bioinformatics Syst Biol
, vol.2009
, pp. 8-1812
-
-
Hache, H.1
Lehrach, H.2
Herwig, R.3
-
4
-
-
77957110013
-
Advantages and limitations of current network inference methods
-
De Smet R, Marchal K. Advantages and limitations of current network inference methods. Nat Rev Micro. 2010; 8(10):717-29.
-
(2010)
Nat Rev Micro
, vol.8
, Issue.10
, pp. 717-729
-
-
De Smet, R.1
Marchal, K.2
-
5
-
-
66449116353
-
Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks
-
Michoel T, De Smet R, Joshi A, Van de Peer Y, Marchal K. Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks. BMC Systems Biology. 2009; 3(1):49.
-
(2009)
BMC Systems Biology
, vol.3
, Issue.1
, pp. 49
-
-
Michoel, T.1
De Smet, R.2
Joshi, A.3
Van de Peer, Y.4
Marchal, K.5
-
6
-
-
84870305264
-
Wisdom of crowds for robust gene network inference
-
Marbach D, Costello J, Kuffner R, Vega N, Prill R, Camacho D, et al.Wisdom of crowds for robust gene network inference. Nat Meth. 2012; 9(8):796-804.
-
(2012)
Nat Meth
, vol.9
, Issue.8
, pp. 796-804
-
-
Marbach, D.1
Costello, J.2
Kuffner, R.3
Vega, N.4
Prill, R.5
Camacho, D.6
-
7
-
-
33646361583
-
GenePattern 2.0
-
Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat. Genet. 2006; 38(5):500-1.
-
(2006)
Nat. Genet
, vol.38
, Issue.5
, pp. 500-501
-
-
Reich, M.1
Liefeld, T.2
Gould, J.3
Lerner, J.4
Tamayo, P.5
Mesirov, J.P.6
-
8
-
-
84861168271
-
Inferring gene regulatory networks by ANOVA
-
Küffner R, Petri T, Tavakkolkhah P, Windhager L, Zimmer R. Inferring gene regulatory networks by ANOVA. Bioinforma. 2012; 28(10):1376-1382.
-
(2012)
Bioinforma
, vol.28
, Issue.10
, pp. 1376-1382
-
-
Küffner, R.1
Petri, T.2
Tavakkolkhah, P.3
Windhager, L.4
Zimmer, R.5
-
9
-
-
33846400424
-
Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles
-
Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al.Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles. PLoS Biol. 2007; 5(1):8.
-
(2007)
PLoS Biol
, vol.5
, Issue.1
, pp. 8
-
-
Faith, J.J.1
Hayete, B.2
Thaden, J.T.3
Mogno, I.4
Wierzbowski, J.5
Cottarel, G.6
-
10
-
-
77958570788
-
Inferring Regulatory Networks from Expression Data Using Tree-Based Methods
-
Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. PLoS ONE. 2010; 5(9):12776.
-
(2010)
PLoS ONE
, vol.5
, Issue.9
, pp. 12776
-
-
Huynh-Thu, V.A.1
Irrthum, A.2
Wehenkel, L.3
Geurts, P.4
-
11
-
-
33747813561
-
The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
-
Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, et al.The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biology. 2006; 7(5):36.
-
(2006)
Genome Biology
, vol.7
, Issue.5
, pp. 36
-
-
Bonneau, R.1
Reiss, D.J.2
Shannon, P.3
Facciotti, M.4
Hood, L.5
Baliga, N.S.6
-
12
-
-
84869882656
-
TIGRESS: Trustful Inference of Gene REgulation using Stability Selection
-
Haury AC, Mordelet F, Vera-Licona P, Vert JP. TIGRESS: Trustful Inference of Gene REgulation using Stability Selection. BMC Syst Biol. 2012; 6(1):145.
-
(2012)
BMC Syst Biol
, vol.6
, Issue.1
, pp. 145
-
-
Haury, A.C.1
Mordelet, F.2
Vera-Licona, P.3
Vert, J.P.4
-
13
-
-
0033655775
-
Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements
-
Butte AJ, Kohane IS. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput. 2000; 5:415-26.
-
(2000)
Pac Symp Biocomput
, vol.5
, pp. 415-426
-
-
Butte, A.J.1
Kohane, I.S.2
-
14
-
-
33947305781
-
ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context
-
Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, et al.ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context. BMC Bioinforma. 2006; 7(Suppl 1):7-7.
-
(2006)
BMC Bioinforma
, vol.7
, pp. 7-7
-
-
Margolin, A.A.1
Nemenman, I.2
Basso, K.3
Wiggins, C.4
Stolovitzky, G.5
Favera, R.D.6
-
15
-
-
60549111634
-
WGCNA: an R package for weighted correlation network analysis
-
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008; 9:559.
-
(2008)
BMC Bioinforma
, vol.9
, pp. 559
-
-
Langfelder, P.1
Horvath, S.2
-
16
-
-
84883771767
-
Network deconvolution as a general method to distinguish direct dependencies in networks
-
Feizi S, Marbach D, Médard M, Kellis M. Network deconvolution as a general method to distinguish direct dependencies in networks. Nat Biotechnol. 2013; 31(8):726-33.
-
(2013)
Nat Biotechnol
, vol.31
, Issue.8
, pp. 726-733
-
-
Feizi, S.1
Marbach, D.2
Médard, M.3
Kellis, M.4
-
17
-
-
84883812062
-
Network link prediction by global silencing of indirect correlations
-
Barzel B, Barabási AL. Network link prediction by global silencing of indirect correlations. Nat Biotechnol. 2013; 31(8):720-5.
-
(2013)
Nat Biotechnol
, vol.31
, Issue.8
, pp. 720-725
-
-
Barzel, B.1
Barabási, A.L.2
-
18
-
-
0742305866
-
Network biology: understanding the cell's functional organization
-
Barabási AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004; 5(2):101-13.
-
(2004)
Nat Rev Genet
, vol.5
, Issue.2
, pp. 101-113
-
-
Barabási, A.L.1
Oltvai, Z.N.2
-
19
-
-
14644426514
-
Global properties of biological networks
-
Grigorov MG. Global properties of biological networks. Drug Discovery Today. 2005; 10(5):365-72.
-
(2005)
Drug Discovery Today
, vol.10
, Issue.5
, pp. 365-372
-
-
Grigorov, M.G.1
-
20
-
-
4644326931
-
Genomic analysis of regulatory network dynamics reveals large topological changes
-
Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature. 2004; 431(7006):308-12.
-
(2004)
Nature
, vol.431
, Issue.7006
, pp. 308-312
-
-
Luscombe, N.M.1
Babu, M.M.2
Yu, H.3
Snyder, M.4
Teichmann, S.A.5
Gerstein, M.6
-
21
-
-
27944493925
-
Scale-free networks in cell biology
-
Albert R. Scale-free networks in cell biology. J Cell Science. 2005; 118:4947-957.
-
(2005)
J Cell Science
, vol.118
, pp. 4947-4957
-
-
Albert, R.1
-
22
-
-
45149101194
-
Current approaches to gene regulatory network modelling
-
Schlitt T, Brazma A. Current approaches to gene regulatory network modelling. BMC Bioinforma. 2007; 8(Suppl 6):9.
-
(2007)
BMC Bioinforma
, vol.8
, pp. 9
-
-
Schlitt, T.1
Brazma, A.2
-
23
-
-
34249079154
-
Network motifs: theory and experimental approaches
-
Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet. 2007; 8(6):450-61.
-
(2007)
Nat Rev Genet
, vol.8
, Issue.6
, pp. 450-461
-
-
Alon, U.1
-
24
-
-
26444479778
-
Optimization by Simulated Annealing
-
Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated Annealing. Science. 1983; 220(4598):671-80.
-
(1983)
Science
, vol.220
, Issue.4598
, pp. 671-680
-
-
Kirkpatrick, S.1
Gelatt, C.D.2
Vecchi, M.P.3
-
25
-
-
12344273375
-
Modeling interactome: scale-free or geometric?
-
Pržulj N, Corneil DG, Jurisica I. Modeling interactome: scale-free or geometric?Bioinforma. 2004; 20(18):3508-515.
-
(2004)
Bioinforma
, vol.20
, Issue.18
, pp. 3508-3515
-
-
Pržulj, N.1
Corneil, D.G.2
Jurisica, I.3
-
26
-
-
33846672214
-
Biological network comparison using graphlet degree distribution
-
Pržulj N. Biological network comparison using graphlet degree distribution. Bioinforma. 2007; 23(2):177-83.
-
(2007)
Bioinforma
, vol.23
, Issue.2
, pp. 177-183
-
-
Pržulj, N.1
-
27
-
-
77950910419
-
Revealing strengths and weaknesses of methods for gene network inference
-
Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G. Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci. 2010; 107(14):6286-291.
-
(2010)
Proc Natl Acad Sci
, vol.107
, Issue.14
, pp. 6286-6291
-
-
Marbach, D.1
Prill, R.J.2
Schaffter, T.3
Mattiussi, C.4
Floreano, D.5
Stolovitzky, G.6
-
28
-
-
84859125037
-
Bagging statistical network inference from large-scale gene expression data
-
de Matos Simoes R, Emmert-Streib F. Bagging statistical network inference from large-scale gene expression data. PLoS ONE. 2012; 7(3):33624.
-
(2012)
PLoS ONE
, vol.7
, Issue.3
, pp. 33624
-
-
de Matos Simoes, R.1
Emmert-Streib, F.2
-
29
-
-
84899876508
-
Nimefi: Gene regulatory network inference using multiple ensemble feature importance algorithms
-
Ruyssinck J, Huynh-Thu VA, Geurts P, Dhaene T, Demeester P, Saeys Y. Nimefi: Gene regulatory network inference using multiple ensemble feature importance algorithms. PLoS ONE. 2014; 9(3):92709.
-
(2014)
PLoS ONE
, vol.9
, Issue.3
, pp. 92709
-
-
Ruyssinck, J.1
Huynh-Thu, V.A.2
Geurts, P.3
Dhaene, T.4
Demeester, P.5
Saeys, Y.6
-
30
-
-
59649110273
-
Generating Realistic In Silico Gene Networks for Performance Assessment of Reverse Engineering Methods
-
Marbach D, Schaffter T, Mattiussi C, Floreano D. Generating Realistic In Silico Gene Networks for Performance Assessment of Reverse Engineering Methods. J Comput Biol. 2009; 16(2):229-39.
-
(2009)
J Comput Biol
, vol.16
, Issue.2
, pp. 229-239
-
-
Marbach, D.1
Schaffter, T.2
Mattiussi, C.3
Floreano, D.4
-
31
-
-
77949644952
-
Towards a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges
-
Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, et al.Towards a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges. PLoS ONE. 2010; 5(2):9202.
-
(2010)
PLoS ONE
, vol.5
, Issue.2
, pp. 9202
-
-
Prill, R.J.1
Marbach, D.2
Saez-Rodriguez, J.3
Sorger, P.K.4
Alexopoulos, L.G.5
Xue, X.6
-
32
-
-
33144486498
-
SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms
-
Van den Bulcke T, Van Leemput K, Naudts B, van Remortel P, Ma H, Verschoren A, et al.SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinforma. 2006; 7(1):43.
-
(2006)
BMC Bioinforma
, vol.7
, Issue.1
, pp. 43
-
-
Van den Bulcke, T.1
Van Leemput, K.2
Naudts, B.3
van Remortel, P.4
Ma, H.5
Verschoren, A.6
-
33
-
-
79961200389
-
GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods
-
Schaffter T, Marbach D, Floreano D. GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods. Bioinforma. 2011; 27(16):2263-270.
-
(2011)
Bioinforma
, vol.27
, Issue.16
, pp. 2263-2270
-
-
Schaffter, T.1
Marbach, D.2
Floreano, D.3
-
34
-
-
84926611831
-
Silence on the relevant literature and errors in implementation
-
Bastiaens P, Birtwistle MR, Bluthgen N, Bruggeman FJ, Cho KH, Cosentino C, et al.Silence on the relevant literature and errors in implementation. Nat Biotech. 2015; 33(4):336-9.
-
(2015)
Nat Biotech
, vol.33
, Issue.4
, pp. 336-339
-
-
Bastiaens, P.1
Birtwistle, M.R.2
Bluthgen, N.3
Bruggeman, F.J.4
Cho, K.H.5
Cosentino, C.6
|