메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

Netter: Re-ranking gene network inference predictions using structural network properties

Author keywords

Gene expression data; Gene regulatory networks; Graphlets; Network inference

Indexed keywords

ALGORITHMS; FORECASTING; GENES; INFERENCE ENGINES; OPTIMIZATION; TOPOLOGY;

EID: 84960085965     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-016-0913-0     Document Type: Article
Times cited : (8)

References (34)
  • 1
    • 78650773077 scopus 로고    scopus 로고
    • A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks
    • Narendra V, Lytkin NI, Aliferis CF, Statnikov A. A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks. Genomics. 2011; 97(1):7-18.
    • (2011) Genomics , vol.97 , Issue.1 , pp. 7-18
    • Narendra, V.1    Lytkin, N.I.2    Aliferis, C.F.3    Statnikov, A.4
  • 2
    • 34547844096 scopus 로고    scopus 로고
    • Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data
    • Soranzo N, Bianconi G, Altafini C. Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics. 2007; 23(13):1640-1647.
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. 1640-1647
    • Soranzo, N.1    Bianconi, G.2    Altafini, C.3
  • 3
    • 68349161006 scopus 로고    scopus 로고
    • Reverse engineering of gene regulatory networks: a comparative study
    • Hache H, Lehrach H, Herwig R. Reverse engineering of gene regulatory networks: a comparative study. EURASIP J Bioinformatics Syst Biol. 2009; 2009:8-1812.
    • (2009) EURASIP J Bioinformatics Syst Biol , vol.2009 , pp. 8-1812
    • Hache, H.1    Lehrach, H.2    Herwig, R.3
  • 4
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • De Smet R, Marchal K. Advantages and limitations of current network inference methods. Nat Rev Micro. 2010; 8(10):717-29.
    • (2010) Nat Rev Micro , vol.8 , Issue.10 , pp. 717-729
    • De Smet, R.1    Marchal, K.2
  • 5
    • 66449116353 scopus 로고    scopus 로고
    • Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks
    • Michoel T, De Smet R, Joshi A, Van de Peer Y, Marchal K. Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks. BMC Systems Biology. 2009; 3(1):49.
    • (2009) BMC Systems Biology , vol.3 , Issue.1 , pp. 49
    • Michoel, T.1    De Smet, R.2    Joshi, A.3    Van de Peer, Y.4    Marchal, K.5
  • 9
    • 33846400424 scopus 로고    scopus 로고
    • Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles
    • Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al.Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles. PLoS Biol. 2007; 5(1):8.
    • (2007) PLoS Biol , vol.5 , Issue.1 , pp. 8
    • Faith, J.J.1    Hayete, B.2    Thaden, J.T.3    Mogno, I.4    Wierzbowski, J.5    Cottarel, G.6
  • 10
    • 77958570788 scopus 로고    scopus 로고
    • Inferring Regulatory Networks from Expression Data Using Tree-Based Methods
    • Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. PLoS ONE. 2010; 5(9):12776.
    • (2010) PLoS ONE , vol.5 , Issue.9 , pp. 12776
    • Huynh-Thu, V.A.1    Irrthum, A.2    Wehenkel, L.3    Geurts, P.4
  • 11
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, et al.The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biology. 2006; 7(5):36.
    • (2006) Genome Biology , vol.7 , Issue.5 , pp. 36
    • Bonneau, R.1    Reiss, D.J.2    Shannon, P.3    Facciotti, M.4    Hood, L.5    Baliga, N.S.6
  • 12
    • 84869882656 scopus 로고    scopus 로고
    • TIGRESS: Trustful Inference of Gene REgulation using Stability Selection
    • Haury AC, Mordelet F, Vera-Licona P, Vert JP. TIGRESS: Trustful Inference of Gene REgulation using Stability Selection. BMC Syst Biol. 2012; 6(1):145.
    • (2012) BMC Syst Biol , vol.6 , Issue.1 , pp. 145
    • Haury, A.C.1    Mordelet, F.2    Vera-Licona, P.3    Vert, J.P.4
  • 13
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements
    • Butte AJ, Kohane IS. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput. 2000; 5:415-26.
    • (2000) Pac Symp Biocomput , vol.5 , pp. 415-426
    • Butte, A.J.1    Kohane, I.S.2
  • 14
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context
    • Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, et al.ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context. BMC Bioinforma. 2006; 7(Suppl 1):7-7.
    • (2006) BMC Bioinforma , vol.7 , pp. 7-7
    • Margolin, A.A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5    Favera, R.D.6
  • 15
    • 60549111634 scopus 로고    scopus 로고
    • WGCNA: an R package for weighted correlation network analysis
    • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008; 9:559.
    • (2008) BMC Bioinforma , vol.9 , pp. 559
    • Langfelder, P.1    Horvath, S.2
  • 16
    • 84883771767 scopus 로고    scopus 로고
    • Network deconvolution as a general method to distinguish direct dependencies in networks
    • Feizi S, Marbach D, Médard M, Kellis M. Network deconvolution as a general method to distinguish direct dependencies in networks. Nat Biotechnol. 2013; 31(8):726-33.
    • (2013) Nat Biotechnol , vol.31 , Issue.8 , pp. 726-733
    • Feizi, S.1    Marbach, D.2    Médard, M.3    Kellis, M.4
  • 17
    • 84883812062 scopus 로고    scopus 로고
    • Network link prediction by global silencing of indirect correlations
    • Barzel B, Barabási AL. Network link prediction by global silencing of indirect correlations. Nat Biotechnol. 2013; 31(8):720-5.
    • (2013) Nat Biotechnol , vol.31 , Issue.8 , pp. 720-725
    • Barzel, B.1    Barabási, A.L.2
  • 18
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • Barabási AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004; 5(2):101-13.
    • (2004) Nat Rev Genet , vol.5 , Issue.2 , pp. 101-113
    • Barabási, A.L.1    Oltvai, Z.N.2
  • 19
    • 14644426514 scopus 로고    scopus 로고
    • Global properties of biological networks
    • Grigorov MG. Global properties of biological networks. Drug Discovery Today. 2005; 10(5):365-72.
    • (2005) Drug Discovery Today , vol.10 , Issue.5 , pp. 365-372
    • Grigorov, M.G.1
  • 20
    • 4644326931 scopus 로고    scopus 로고
    • Genomic analysis of regulatory network dynamics reveals large topological changes
    • Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature. 2004; 431(7006):308-12.
    • (2004) Nature , vol.431 , Issue.7006 , pp. 308-312
    • Luscombe, N.M.1    Babu, M.M.2    Yu, H.3    Snyder, M.4    Teichmann, S.A.5    Gerstein, M.6
  • 21
    • 27944493925 scopus 로고    scopus 로고
    • Scale-free networks in cell biology
    • Albert R. Scale-free networks in cell biology. J Cell Science. 2005; 118:4947-957.
    • (2005) J Cell Science , vol.118 , pp. 4947-4957
    • Albert, R.1
  • 22
    • 45149101194 scopus 로고    scopus 로고
    • Current approaches to gene regulatory network modelling
    • Schlitt T, Brazma A. Current approaches to gene regulatory network modelling. BMC Bioinforma. 2007; 8(Suppl 6):9.
    • (2007) BMC Bioinforma , vol.8 , pp. 9
    • Schlitt, T.1    Brazma, A.2
  • 23
    • 34249079154 scopus 로고    scopus 로고
    • Network motifs: theory and experimental approaches
    • Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet. 2007; 8(6):450-61.
    • (2007) Nat Rev Genet , vol.8 , Issue.6 , pp. 450-461
    • Alon, U.1
  • 24
    • 26444479778 scopus 로고
    • Optimization by Simulated Annealing
    • Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated Annealing. Science. 1983; 220(4598):671-80.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 25
    • 12344273375 scopus 로고    scopus 로고
    • Modeling interactome: scale-free or geometric?
    • Pržulj N, Corneil DG, Jurisica I. Modeling interactome: scale-free or geometric?Bioinforma. 2004; 20(18):3508-515.
    • (2004) Bioinforma , vol.20 , Issue.18 , pp. 3508-3515
    • Pržulj, N.1    Corneil, D.G.2    Jurisica, I.3
  • 26
    • 33846672214 scopus 로고    scopus 로고
    • Biological network comparison using graphlet degree distribution
    • Pržulj N. Biological network comparison using graphlet degree distribution. Bioinforma. 2007; 23(2):177-83.
    • (2007) Bioinforma , vol.23 , Issue.2 , pp. 177-183
    • Pržulj, N.1
  • 28
    • 84859125037 scopus 로고    scopus 로고
    • Bagging statistical network inference from large-scale gene expression data
    • de Matos Simoes R, Emmert-Streib F. Bagging statistical network inference from large-scale gene expression data. PLoS ONE. 2012; 7(3):33624.
    • (2012) PLoS ONE , vol.7 , Issue.3 , pp. 33624
    • de Matos Simoes, R.1    Emmert-Streib, F.2
  • 29
    • 84899876508 scopus 로고    scopus 로고
    • Nimefi: Gene regulatory network inference using multiple ensemble feature importance algorithms
    • Ruyssinck J, Huynh-Thu VA, Geurts P, Dhaene T, Demeester P, Saeys Y. Nimefi: Gene regulatory network inference using multiple ensemble feature importance algorithms. PLoS ONE. 2014; 9(3):92709.
    • (2014) PLoS ONE , vol.9 , Issue.3 , pp. 92709
    • Ruyssinck, J.1    Huynh-Thu, V.A.2    Geurts, P.3    Dhaene, T.4    Demeester, P.5    Saeys, Y.6
  • 30
    • 59649110273 scopus 로고    scopus 로고
    • Generating Realistic In Silico Gene Networks for Performance Assessment of Reverse Engineering Methods
    • Marbach D, Schaffter T, Mattiussi C, Floreano D. Generating Realistic In Silico Gene Networks for Performance Assessment of Reverse Engineering Methods. J Comput Biol. 2009; 16(2):229-39.
    • (2009) J Comput Biol , vol.16 , Issue.2 , pp. 229-239
    • Marbach, D.1    Schaffter, T.2    Mattiussi, C.3    Floreano, D.4
  • 32
    • 33144486498 scopus 로고    scopus 로고
    • SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms
    • Van den Bulcke T, Van Leemput K, Naudts B, van Remortel P, Ma H, Verschoren A, et al.SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinforma. 2006; 7(1):43.
    • (2006) BMC Bioinforma , vol.7 , Issue.1 , pp. 43
    • Van den Bulcke, T.1    Van Leemput, K.2    Naudts, B.3    van Remortel, P.4    Ma, H.5    Verschoren, A.6
  • 33
    • 79961200389 scopus 로고    scopus 로고
    • GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods
    • Schaffter T, Marbach D, Floreano D. GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods. Bioinforma. 2011; 27(16):2263-270.
    • (2011) Bioinforma , vol.27 , Issue.16 , pp. 2263-2270
    • Schaffter, T.1    Marbach, D.2    Floreano, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.