메뉴 건너뛰기




Volumn 9, Issue 3, 2014, Pages

NIMEFI: Gene regulatory network inference using multiple ensemble feature importance algorithms

Author keywords

[No Author keywords available]

Indexed keywords

ANALYSIS OF VARIANCE; AREA UNDER THE CURVE; ARTICLE; CONTROLLED STUDY; CORRELATION COEFFICIENT; DREAM4 ALGORITHM; DREAM5 ALGORITHM; GENE CONTROL; GENE REGULATORY NETWORK; GENENETWEAVER ALGORITHM; GENETIC ALGORITHM; GENIE3 ALGORITHM; HIGH THROUGHPUT SCREENING; NETWORK INFERENCE USING MULTIPLE ENSEMBLE FEATURE IMPORTANCE ALGORITHM; RECEIVER OPERATING CHARACTERISTIC; SUPPORT VECTOR MACHINE; SYNTREN 100 ALGORITHM; ALGORITHM; BIOLOGICAL MODEL; GENE EXPRESSION REGULATION; PHYSIOLOGY;

EID: 84899876508     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0092709     Document Type: Article
Times cited : (60)

References (36)
  • 1
    • 84860280305 scopus 로고    scopus 로고
    • Gene regulatory network inference: Evaluation and application to ovarian cancer allows the prioritization of drug targets
    • Madhamshettiwar PB, Maetschke SR, Davis MJ, Reverter A, Ragan MA (2012) Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Medicine 4: 41.
    • (2012) Genome Medicine , vol.4 , pp. 41
    • Madhamshettiwar, P.B.1    Maetschke, S.R.2    Davis, M.J.3    Reverter, A.4    Ragan, M.A.5
  • 2
    • 66449116353 scopus 로고    scopus 로고
    • Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks
    • Michoel T, De Smet R, Joshi A, Van de Peer Y, Marchal K (2009) Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks. BMC Systems Biology 3: 49.
    • (2009) BMC Systems Biology , vol.3 , pp. 49
    • Michoel, T.1    De Smet, R.2    Joshi, A.3    Van De Peer, Y.4    Marchal, K.5
  • 3
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • De Smet R, Marchal K (2010) Advantages and limitations of current network inference methods. Nat Rev Micro 8: 717-729.
    • (2010) Nat Rev Micro , vol.8 , pp. 717-729
    • De Smet, R.1    Marchal, K.2
  • 5
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements
    • Butte AJ, Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. In: Pacific Symposium on Biocomputing. 418-429.
    • (2000) Pacific Symposium on Biocomputing , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 6
    • 33846400424 scopus 로고    scopus 로고
    • Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles
    • Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, et al. (2007) Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles. PLoS Biol 5: e8.
    • (2007) PLoS Biol , vol.5
    • Faith, J.J.1    Hayete, B.2    Thaden, J.T.3    Mogno, I.4    Wierzbowski, J.5
  • 9
    • 84960463485 scopus 로고    scopus 로고
    • Minimum Redundancy Feature Selection from Microarray Gene Expression Data
    • Ding C, Peng H (2003) Minimum Redundancy Feature Selection from Microarray Gene Expression Data. In: J Bioinform Comput Biol. 523-529.
    • (2003) J Bioinform Comput Biol , pp. 523-529
    • Ding, C.1    Peng, H.2
  • 10
    • 77957141016 scopus 로고    scopus 로고
    • Inferring the conservative causal core of gene regulatory networks
    • Altay G, Streib F (2010) Inferring the conservative causal core of gene regulatory networks. BMC Systems Biology 4: 132.
    • (2010) BMC Systems Biology , vol.4 , pp. 132
    • Altay, G.1    Streib, F.2
  • 11
    • 84859125037 scopus 로고    scopus 로고
    • Bagging statistical network inference from large-scale gene expression data
    • de Matos Simoes R, Emmert-Streib F (2012) Bagging statistical network inference from large-scale gene expression data. PLoS ONE 7: e33624.
    • (2012) PLoS ONE , vol.7
    • De Matos Simoes, R.1    Emmert-Streib, F.2
  • 13
  • 14
    • 34547844096 scopus 로고    scopus 로고
    • Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: Synthetic versus real data
    • DOI 10.1093/bioinformatics/btm163
    • Soranzo N, Bianconi G, Altafini C (2007) Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics 23: 1640-1647. (Pubitemid 47244454)
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. 1640-1647
    • Soranzo, N.1    Bianconi, G.2    Altafini, C.3
  • 15
    • 68149164746 scopus 로고    scopus 로고
    • Reverse engineering of gene regulatory networks: A comparative study
    • Hache H, Lehrach H, Herwig R (2009) Reverse engineering of gene regulatory networks: a comparative study. EURASIP J Bioinformatics Syst Biol 2009: 8: 1-8: 12.
    • (2009) EURASIP J Bioinformatics Syst Biol , vol.2009
    • Hache, H.1    Lehrach, H.2    Herwig, R.3
  • 16
    • 78650773077 scopus 로고    scopus 로고
    • A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks
    • Narendra V, Lytkin NI, Aliferis CF, Statnikov A (2011) A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks. Genomics 97: 7-18.
    • (2011) Genomics , vol.97 , pp. 7-18
    • Narendra, V.1    Lytkin, N.I.2    Aliferis, C.F.3    Statnikov, A.4
  • 17
  • 18
    • 59649110273 scopus 로고    scopus 로고
    • Generating Realistic In Silico Gene Networks for Performance Assessment of Reverse Engineering Methods
    • Marbach D, Schaffter T, Mattiussi C, Floreano D (2009) Generating Realistic In Silico Gene Networks for Performance Assessment of Reverse Engineering Methods. Journal of computational biology 16: 229-239.
    • (2009) Journal of Computational Biology , vol.16 , pp. 229-239
    • Marbach, D.1    Schaffter, T.2    Mattiussi, C.3    Floreano, D.4
  • 21
    • 77958570788 scopus 로고    scopus 로고
    • Inferring Regulatory Networks from Expression Data Using Tree-Based Methods
    • Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P (2010) Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. PLoS ONE 5.
    • (2010) PLoS ONE , vol.5
    • Huynh-Thu, V.A.1    Irrthum, A.2    Wehenkel, L.3    Geurts, P.4
  • 22
    • 33144486498 scopus 로고    scopus 로고
    • SynTReN: A generator of synthetic gene expression data for design and analysis of structure learning algorithms
    • Van den Bulcke T, Van Leemput K, Naudts B, van Remortel P, Ma H, et al. (2006) SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinformatics 7: 43.
    • (2006) BMC Bioinformatics , vol.7 , pp. 43
    • Van Den Bulcke, T.1    Van Leemput, K.2    Naudts, B.3    Van Remortel, P.4    Ma, H.5
  • 23
    • 79961200389 scopus 로고    scopus 로고
    • GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods
    • Schaffter T, Marbach D, Floreano D (2011) GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27: 2263-2270.
    • (2011) Bioinformatics , vol.27 , pp. 2263-2270
    • Schaffter, T.1    Marbach, D.2    Floreano, D.3
  • 24
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3: 1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 25
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI 10.1093/bioinformatics/btm344
    • Saeys Y, Inza IN, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23: 2507-2517. (Pubitemid 350048351)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 26
    • 77949507309 scopus 로고    scopus 로고
    • Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
    • Abeel T, Helleputte T, Van de Peer Y, Dupont P, Saeys Y (2010) Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26: 392-398.
    • (2010) Bioinformatics , vol.26 , pp. 392-398
    • Abeel, T.1    Helleputte, T.2    Van De Peer, Y.3    Dupont, P.4    Saeys, Y.5
  • 27
    • 56449120785 scopus 로고    scopus 로고
    • Bolasso: Model consistent Lasso estimation through the bootstrap
    • New York, NY, USA: ACM, ICML '08
    • Bach FR (2008) Bolasso: model consistent Lasso estimation through the bootstrap. In: Proceedings of the 25th international conference on Machine learning. New York, NY, USA: ACM, ICML '08, pp. 33-40.
    • (2008) Proceedings of the 25th International Conference on Machine Learning , pp. 33-40
    • Bach, F.R.1
  • 30
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning 46: 389-422. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 33
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman J, Hastie T, Tibshirani R (2009) Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33: 1-22.
    • (2009) Journal of Statistical Software , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 34
    • 27144516097 scopus 로고    scopus 로고
    • Pareto-Front Exploitation in Symbolic Regression
    • OReilly UM, Yu T, Riolo R, Worzel B, editors, Genetic Programming Theory and Practice II SE - 17, Springer US
    • Smits G, Kotanchek M (2005) Pareto-Front Exploitation in Symbolic Regression. In: OReilly UM, Yu T, Riolo R, Worzel B, editors, Genetic Programming Theory and Practice II SE - 17, Springer US, volume 8 of Genetic Programming. pp. 283-299.
    • (2005) Genetic Programming , vol.8 , pp. 283-299
    • Smits, G.1    Kotanchek, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.