메뉴 건너뛰기




Volumn , Issue , 2015, Pages 2326-2335

Multi-timescale long short-term memory neural network for modelling sentences and documents

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN; CLASSIFICATION (OF INFORMATION); NATURAL LANGUAGE PROCESSING SYSTEMS; TEXT PROCESSING;

EID: 84959923372     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/d15-1280     Document Type: Conference Paper
Times cited : (190)

References (35)
  • 1
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term dependencies with gradient descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157-166.
    • (1994) Neural Networks, IEEE Transactions on , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 8
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 12:2121-2159.
    • (2011) The Journal of Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 9
    • 85057230110 scopus 로고
    • Hierarchical recurrent neural networks for long-term dependencies
    • Citeseer
    • Salah El Hihi and Yoshua Bengio. 1995. Hierarchical recurrent neural networks for long-term dependencies. In NIPS, pages 493-499. Citeseer.
    • (1995) NIPS , pp. 493-499
    • El Hihi, S.1    Bengio, Y.2
  • 10
    • 26444565569 scopus 로고
    • Finding structure in time
    • Jeffrey L Elman. 1990. Finding structure in time. Cognitive science, 14(2):179-211.
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 14
    • 84937936034 scopus 로고    scopus 로고
    • Convolutional neural network architectures for matching natural language sentences
    • Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional neural network architectures for matching natural language sentences. In Advances in Neural Information Processing Systems.
    • (2014) Advances in Neural Information Processing Systems
    • Hu, B.1    Lu, Z.2    Li, H.3    Chen, Q.4
  • 18
    • 84919829999 scopus 로고    scopus 로고
    • Distributed representations of sentences and documents
    • Quoc V. Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In Proceedings of ICML.
    • (2014) Proceedings of ICML
    • Le, Q.V.1    Mikolov, T.2
  • 23
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013b. Distributed representations of words and phrases and their compositionality. In NIPS, pages 3111-3119.
    • (2013) NIPS , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 24
    • 80053288309 scopus 로고    scopus 로고
    • Composition in distributional models of semantics
    • Jeff Mitchell and Mirella Lapata. 2010. Composition in distributional models of semantics. Cognitive science, 34(8):1388-1429.
    • (2010) Cognitive Science , vol.34 , Issue.8 , pp. 1388-1429
    • Mitchell, J.1    Lapata, M.2
  • 25
    • 0025519291 scopus 로고
    • Recursive distributed representations
    • Jordan B Pollack. 1990. Recursive distributed representations. Artificial Intelligence, 46(1):77-105.
    • (1990) Artificial Intelligence , vol.46 , Issue.1 , pp. 77-105
    • Pollack, J.B.1
  • 33
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Paul J Werbos. 1990. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10):1550-1560.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 34
    • 84951321278 scopus 로고    scopus 로고
    • Spoken language understanding using long short-term memory neural networks
    • Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Geoffrey Zweig, and Yangyang Shi. 2014. Spoken language understanding using long short-term memory neural networks. IEEE SLT.
    • (2014) IEEE SLT
    • Yao, K.1    Peng, B.2    Zhang, Y.3    Yu, D.4    Zweig, G.5    Shi, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.