메뉴 건너뛰기




Volumn , Issue SPEC. ISS., 2003, Pages 182-189

Text Categorization by Boosting Automatically Extracted Concepts

Author keywords

Boosting; Classification; Concept extraction; Document categorization; Lexical semantics; Machine learning

Indexed keywords

ADA (PROGRAMMING LANGUAGE); AUTOMATION; BENCHMARKING; FEATURE EXTRACTION; INFORMATION RETRIEVAL; LINGUISTICS; PROBABILISTIC LOGICS; ROBUSTNESS (CONTROL SYSTEMS); SEMANTICS;

EID: 1542377542     PISSN: 01635840     EISSN: None     Source Type: Journal    
DOI: 10.1145/860435.860470     Document Type: Conference Paper
Times cited : (95)

References (21)
  • 1
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • T. Joachims. Text categorization with support vector machines: learning with many relevant features. In Proceedings 10th European Conference on Machine Learning, pages 137-142, 1998.
    • (1998) Proceedings 10th European Conference on Machine Learning , pp. 137-142
    • Joachims, T.1
  • 2
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for text categorization. Machine. Learning, 39(2/3): 135-168, 2000.
    • (2000) Machine. Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 6
    • 0029546874 scopus 로고
    • Using linear algebra for intelligent information retrieval
    • M. W. Berry, S. T. Dumais, and G. W O'Brien. Using linear algebra for intelligent information retrieval. SIAM Review, 37(4): 177-196, 1995.
    • (1995) SIAM Review , vol.37 , Issue.4 , pp. 177-196
    • Berry, M.W.1    Dumais, S.T.2    O'Brien, G.W.3
  • 7
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning Journal, 42(1):177-196, 2001.
    • (2001) Machine Learning Journal , vol.42 , Issue.1 , pp. 177-196
    • Hofmann, T.1
  • 8
    • 1542310259 scopus 로고    scopus 로고
    • Probmap - A probabilistic approach for mapping large document collections
    • T. Hofmann. Probmap - a probabilistic approach for mapping large document collections. Journal for Intelligent Data Analysis, 4:149-164, 2000.
    • (2000) Journal for Intelligent Data Analysis , vol.4 , pp. 149-164
    • Hofmann, T.1
  • 9
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 10
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):297-336, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.