메뉴 건너뛰기




Volumn 23, Issue 6, 2015, Pages 2163-2173

Fuzzy Restricted Boltzmann Machine for the Enhancement of Deep Learning

Author keywords

Deep learning; fuzzy deep networks; fuzzy restricted Boltzmannmachine; image classification; image inpainting; restricted Boltzmann machine (RBM)

Indexed keywords

ARTIFICIAL INTELLIGENCE; CHARACTER RECOGNITION; FREE ENERGY; FUZZY LOGIC; FUZZY SETS; IMAGE CLASSIFICATION; IMAGE PROCESSING; IMAGE RECOGNITION; LEARNING SYSTEMS; PATTERN RECOGNITION; SPEECH RECOGNITION; VIDEO SIGNAL PROCESSING;

EID: 84959506269     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2015.2406889     Document Type: Article
Times cited : (213)

References (37)
  • 3
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 4
    • 84874125782 scopus 로고    scopus 로고
    • An efficient learning procedure for deep Boltzmann machines
    • R. Salakhutdinov and G. Hinton, "An efficient learning procedure for deep Boltzmann machines," Neural Comput., vol. 24, no. 8, pp. 1967-2006, 2012.
    • (2012) Neural Comput. , vol.24 , Issue.8 , pp. 1967-2006
    • Salakhutdinov, R.1    Hinton, G.2
  • 6
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 8
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," J. Mach. Learning Res., vol. 11, pp. 3371-3408, 2010.
    • (2010) J. Mach. Learning Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 9
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Aug.
    • Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 11
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Foundations Trends Mach. Learning, vol. 2, no. 1, pp. 1-127, 2009.
    • (2009) Foundations Trends Mach. Learning , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 14
    • 79955836081 scopus 로고    scopus 로고
    • Two distributed-state models for generating high-dimensional time series
    • G. W. Taylor, G. E. Hinton, and S. T. Roweis, "Two distributed-state models for generating high-dimensional time series," J. Mach. Learning Res., vol. 12, pp. 1025-1068, 2011.
    • (2011) J. Mach. Learning Res. , vol.12 , pp. 1025-1068
    • Taylor, G.W.1    Hinton, G.E.2    Roweis, S.T.3
  • 18
    • 80052392279 scopus 로고    scopus 로고
    • Learning multilevel distributed representations for high-dimensional sequences
    • I. Sutskever and G. E. Hinton, "Learning multilevel distributed representations for high-dimensional sequences," in Proc. Int. Conf. Artificial Intell. Statist., 2007, pp. 548-555.
    • (2007) Proc. Int. Conf. Artificial Intell. Statist. , pp. 548-555
    • Sutskever, I.1    Hinton, G.E.2
  • 19
    • 0001325256 scopus 로고    scopus 로고
    • Insight of a fuzzy regression model
    • H.-F.Wang and R.-C. Tsaur, "Insight of a fuzzy regression model," Fuzzy Sets Syst., vol. 112, no. 3, pp. 355-369, 2000.
    • (2000) Fuzzy Sets Syst. , vol.112 , Issue.3 , pp. 355-369
    • Wang, H.-F.1    Tsaur, R.-C.2
  • 20
    • 42549092067 scopus 로고    scopus 로고
    • Fuzzy regression analysis by support vector learning approach
    • Apr.
    • P.-Y. Hao and J.-H. Chiang, "Fuzzy regression analysis by support vector learning approach," IEEE Trans. Fuzzy Syst., vol. 16, no. 2, pp. 428-441, Apr. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.2 , pp. 428-441
    • Hao, P.-Y.1    Chiang, J.-H.2
  • 21
    • 84885023116 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines: An introduction
    • A. Fischer and C. Igel, "Training restricted Boltzmann machines: An introduction," Pattern Recog., vol. 47, no. 1, pp. 25-39, 2014.
    • (2014) Pattern Recog. , vol.47 , Issue.1 , pp. 25-39
    • Fischer, A.1    Igel, C.2
  • 22
    • 84938071127 scopus 로고    scopus 로고
    • An automatic setting for training restricted Boltzmann machine
    • Man Cybern.
    • C.-Y. Zhang and C. Chen, "An automatic setting for training restricted Boltzmann machine," in Proc. IEEE Int. Conf. Syst., Man Cybern., 2014, pp. 4037-4041.
    • (2014) Proc. IEEE Int. Conf. Syst. , pp. 4037-4041
    • Zhang, C.-Y.1    Chen, C.2
  • 23
    • 84885345006 scopus 로고    scopus 로고
    • Learning coefficient in Bayesian estimation of restricted Boltzmann machine
    • M. Aoyagi, "Learning coefficient in bayesian estimation of restricted Boltzmann machine," J. Algebraic Statist., vol. 4, no. 1, pp. 31-58, 2013.
    • (2013) J. Algebraic Statist. , vol.4 , Issue.1 , pp. 31-58
    • Aoyagi, M.1
  • 24
    • 84874078409 scopus 로고    scopus 로고
    • Learning coefficient of generalization error in Bayesian estimation and Vandermonde matrix-type singularity
    • M. Aoyagi and K. Nagata, "Learning coefficient of generalization error in Bayesian estimation and Vandermonde matrix-type singularity," Neural Comput., vol. 24, no. 6, pp. 1569-1610, 2012.
    • (2012) Neural Comput. , vol.24 , Issue.6 , pp. 1569-1610
    • Aoyagi, M.1    Nagata, K.2
  • 26
    • 84921325141 scopus 로고    scopus 로고
    • Fuzzy relation and fuzzy function over fuzzy sets: A retrospective
    • S. Dutta and M. Chakraborty, "Fuzzy relation and fuzzy function over fuzzy sets: A retrospective," Soft Comput., vol. 19, no. 1, pp. 99-112, 2014.
    • (2014) Soft Comput. , vol.19 , Issue.1 , pp. 99-112
    • Dutta, S.1    Chakraborty, M.2
  • 30
    • 0035247535 scopus 로고    scopus 로고
    • Centroid of a type-2 fuzzy set
    • N. N. Karnik and J. M. Mendel, "Centroid of a type-2 fuzzy set," Inform. Sci., vol. 132, no. 14, pp. 195-220, 2001.
    • (2001) Inform. Sci. , vol.132 , Issue.14 , pp. 195-220
    • Karnik, N.N.1    Mendel, J.M.2
  • 32
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Comput., vol. 14, no. 8, pp. 1771-1800, 2002.
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.1
  • 34
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, "An introduction to variational methods for graphical models," Mach. Learning, vol. 37, no. 2, pp. 183-233, 1999.
    • (1999) Mach. Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 36
    • 35348818718 scopus 로고    scopus 로고
    • Learning multiple layers of representation
    • G. E. Hinton, "Learning multiple layers of representation," Trends Cognitive Sci., vol. 11, no. 10, pp. 428-434, 2007.
    • (2007) Trends Cognitive Sci. , vol.11 , Issue.10 , pp. 428-434
    • Hinton, G.E.1
  • 37
    • 84900800509 scopus 로고    scopus 로고
    • Data-intensive applications, challenges, techniques and technologies: A survey on big data
    • C. P. Chen and C.-Y. Zhang, "Data-intensive applications, challenges, techniques and technologies: A survey on big data," Inform. Sci., vol. 275, pp. 314-347, 2014.
    • (2014) Inform. Sci. , vol.275 , pp. 314-347
    • Chen, C.P.1    Zhang, C.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.