메뉴 건너뛰기




Volumn 12, Issue 2, 2016, Pages

Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework

Author keywords

[No Author keywords available]

Indexed keywords

ANIMALS; DECISION MAKING; ELECTRIC NETWORK ANALYSIS; LEARNING SYSTEMS; NEURONS; OPTIMIZATION;

EID: 84959494188     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1004792     Document Type: Article
Times cited : (220)

References (83)
  • 1
    • 77954750667 scopus 로고    scopus 로고
    • Neuronal population coding of parametric working memory
    • 20631171, .;:–
    • Barak O, Tsodyks M, Romo R, Neuronal population coding of parametric working memory. 2010J Neurosci;30:9424–9430. doi: 10.1523/JNEUROSCI.1875-10.201020631171
    • (2010) J Neurosci , vol.30 , pp. 9424-9430
    • Barak, O.1    Tsodyks, M.2    Romo, R.3
  • 2
    • 84863881230 scopus 로고    scopus 로고
    • Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses
    • 21048899, .;:
    • Rigotti M, Rubin DBD, Wang XJ, Fusi S, Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses. 2010Front Comput Neurosci;4:24. doi: 10.3389/fncom.2010.0002421048899
    • (2010) Front Comput Neurosci , vol.4 , pp. 24
    • Rigotti, M.1    Rubin, D.B.D.2    Wang, X.J.3    Fusi, S.4
  • 3
    • 84878390558 scopus 로고    scopus 로고
    • The importance of mixed selectivity in complex cognitive tasks
    • 23685452, .;:–
    • Rigotti M, Barak O, Warden MR, Wang XJ, Daw ND, Miller EK, et al. The importance of mixed selectivity in complex cognitive tasks. 2013Nature;497:585–590. doi: 10.1038/nature1216023685452
    • (2013) Nature , vol.497 , pp. 585-590
    • Rigotti, M.1    Barak, O.2    Warden, M.R.3    Wang, X.J.4    Daw, N.D.5    Miller, E.K.6
  • 4
    • 84937629687 scopus 로고    scopus 로고
    • From the neuron doctrine to neural networks
    • 26152865, .;:–
    • Yuste R, From the neuron doctrine to neural networks. 2015Nat Rev Neurosci;16:487–497. doi: 10.1038/nrn396226152865
    • (2015) Nat Rev Neurosci , vol.16 , pp. 487-497
    • Yuste, R.1
  • 5
    • 84887390404 scopus 로고    scopus 로고
    • Context-dependent computation by recurrent dynamics in prefrontal cortex
    • 24201281, .;:–
    • Mante V, Sussillo D, Shenoy KV, Newsome WT, Context-dependent computation by recurrent dynamics in prefrontal cortex. 2013Nature;503:78–84. doi: 10.1038/nature1274224201281
    • (2013) Nature , vol.503 , pp. 78-84
    • Mante, V.1    Sussillo, D.2    Shenoy, K.V.3    Newsome, W.T.4
  • 7
    • 84930243913 scopus 로고    scopus 로고
    • Dynamic control of response criterion in premotor cortex during perceptual detection under temporal uncertainty
    • 25959731, .;:–
    • Carnevale F, de Lafuente V, Romo R, Barak O, Parga N, Dynamic control of response criterion in premotor cortex during perceptual detection under temporal uncertainty. 2015Neuron;86:1067–1077. doi: 10.1016/j.neuron.2015.04.01425959731
    • (2015) Neuron , vol.86 , pp. 1067-1077
    • Carnevale, F.1    de Lafuente, V.2    Romo, R.3    Barak, O.4    Parga, N.5
  • 8
    • 84933280082 scopus 로고    scopus 로고
    • A neural network that finds a naturalistic solution for the production of muscle activity
    • 26075643, .;:–
    • Sussillo D, Churchland MM, Kaufman MT, Shenoy KV, A neural network that finds a naturalistic solution for the production of muscle activity. 2015Nat Neurosci;18:1025–1033. doi: 10.1038/nn.404226075643
    • (2015) Nat Neurosci , vol.18 , pp. 1025-1033
    • Sussillo, D.1    Churchland, M.M.2    Kaufman, M.T.3    Shenoy, K.V.4
  • 9
    • 84933567356 scopus 로고    scopus 로고
    • Cortical information flow during flexible sensorimotor decisions
    • 26089513, .;:–
    • Siegel M, Buschman TJ, Miller EK, Cortical information flow during flexible sensorimotor decisions. 2015Science;348:1352–55. doi: 10.1126/science.aab055126089513
    • (2015) Science , vol.348 , pp. 1352-1355
    • Siegel, M.1    Buschman, T.J.2    Miller, E.K.3
  • 10
    • 79251589964 scopus 로고    scopus 로고
    • How advances in neural recording affect data analysis
    • 21270781, .;:–
    • Stevenson IH, Kording KP, How advances in neural recording affect data analysis. 2011Nat Neurosci;14:139–142. doi: 10.1038/nn.273121270781
    • (2011) Nat Neurosci , vol.14 , pp. 139-142
    • Stevenson, I.H.1    Kording, K.P.2
  • 11
    • 84908555723 scopus 로고    scopus 로고
    • Dimensionality reduction for large-scale neural recordings
    • 25151264, .;:–
    • Cunningham JP, Yu BM, Dimensionality reduction for large-scale neural recordings. 2014Nat Neurosci;17:1500–1509. doi: 10.1038/nn.377625151264
    • (2014) Nat Neurosci , vol.17 , pp. 1500-1509
    • Cunningham, J.P.1    Yu, B.M.2
  • 12
    • 84928527851 scopus 로고    scopus 로고
    • On simplicity and complexity in the brave new world of large-scale neuroscience
    • 25932978, .;:–
    • Gao P, Ganguli S, On simplicity and complexity in the brave new world of large-scale neuroscience. 2015Curr Opin Neurobiol;32:148–155. doi: 10.1016/j.conb.2015.04.00325932978
    • (2015) Curr Opin Neurobiol , vol.32 , pp. 148-155
    • Gao, P.1    Ganguli, S.2
  • 14
    • 0027154319 scopus 로고
    • Approximation of dynamical systems by continuous time recurrent neural networks
    • .;:–
    • Funahashi K, Nakamura Y, Approximation of dynamical systems by continuous time recurrent neural networks. 1993Neural Networks;6:801–806. doi: 10.1016/S0893-6080(05)80125-X
    • (1993) Neural Networks , vol.6 , pp. 801-806
    • Funahashi, K.1    Nakamura, Y.2
  • 15
    • 0029255891 scopus 로고
    • On the Computational Power of Neural Nets
    • .;:–
    • Siegelmann HT, Sontag ED, On the Computational Power of Neural Nets. 1995J Comput Syst Sci;50:132–150. doi: 10.1006/jcss.1995.1013
    • (1995) J Comput Syst Sci , vol.50 , pp. 132-150
    • Siegelmann, H.T.1    Sontag, E.D.2
  • 16
    • 84902213589 scopus 로고    scopus 로고
    • Performance-optimized hierarchical models predict neural responses in higher visual cortex
    • 24812127, .;:–
    • Yamins DLK, Hong H, Cadieu CF, Solomon Ea, Seibert D, DiCarlo JJ, Performance-optimized hierarchical models predict neural responses in higher visual cortex. 2014Proc Natl Acad Sci U S A;111:8619–24. doi: 10.1073/pnas.140311211124812127
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 8619-8624
    • Yamins, D.L.K.1    Hong, H.2    Cadieu, C.F.3    Solomon, E.4    Seibert, D.5    DiCarlo, J.J.6
  • 17
    • 84893503924 scopus 로고    scopus 로고
    • Neural circuits as computational dynamical systems
    • 24509098, .;:–
    • Sussillo D, Neural circuits as computational dynamical systems. 2014Curr Opin Neurobiol;25:156–163. doi: 10.1016/j.conb.2014.01.00824509098
    • (2014) Curr Opin Neurobiol , vol.25 , pp. 156-163
    • Sussillo, D.1
  • 18
    • 0023877474 scopus 로고
    • A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons
    • 3344044, .;:–
    • Zipser D, Andersen RA, A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. 1988Nature;331:679–684. doi: 10.1038/331679a03344044
    • (1988) Nature , vol.331 , pp. 679-684
    • Zipser, D.1    Andersen, R.A.2
  • 20
    • 0025453517 scopus 로고
    • On the control of automatic processes: a parallel distributed processing account of the Stroop effect
    • 2200075, .;:–
    • Cohen JD, Dunbar K, McClelland JL, On the control of automatic processes: a parallel distributed processing account of the Stroop effect. 1990Psychol Rev;97:332–361. doi: 10.1037/0033-295X.97.3.3322200075
    • (1990) Psychol Rev , vol.97 , pp. 332-361
    • Cohen, J.D.1    Dunbar, K.2    McClelland, J.L.3
  • 21
    • 77049204393 scopus 로고
    • Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones
    • 13222354, .;:–
    • Eccles JC, Fatt P, Koketsu K, Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. 1954J Physiol;126:524–562. doi: 10.1113/jphysiol.1954.sp00522613222354
    • (1954) J Physiol , vol.126 , pp. 524-562
    • Eccles, J.C.1    Fatt, P.2    Koketsu, K.3
  • 22
    • 60449120140 scopus 로고    scopus 로고
    • Balanced amplification: A new mechanism of selective amplification of neural activity patterns
    • 19249282, .;:–
    • Murphy BK, Miller KD, Balanced amplification: A new mechanism of selective amplification of neural activity patterns. 2009Neuron;61:635–48. doi: 10.1016/j.neuron.2009.02.00519249282
    • (2009) Neuron , vol.61 , pp. 635-648
    • Murphy, B.K.1    Miller, K.D.2
  • 24
    • 18044383304 scopus 로고    scopus 로고
    • Highly nonrandom features of synaptic connectivity in local cortical circuits
    • 15737062, .;:
    • Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB, Highly nonrandom features of synaptic connectivity in local cortical circuits. 2005PLoS Biol;3:e68. doi: 10.1371/journal.pbio.003006815737062
    • (2005) PLoS Biol , vol.3 , pp. e68
    • Song, S.1    Sjöström, P.J.2    Reigl, M.3    Nelson, S.4    Chklovskii, D.B.5
  • 25
    • 84880920131 scopus 로고    scopus 로고
    • Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons
    • 23817549, .;:–
    • Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M, Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. 2013Nat Neurosci;16:1068–76. doi: 10.1038/nn.344623817549
    • (2013) Nat Neurosci , vol.16 , pp. 1068-1076
    • Pfeffer, C.K.1    Xue, M.2    He, M.3    Huang, Z.J.4    Scanziani, M.5
  • 26
    • 84894283431 scopus 로고    scopus 로고
    • The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model
    • 23203991, .;:–
    • Potjans TC, Diesmann M, The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. 2014Cereb Cortex;24:785–806. doi: 10.1093/cercor/bhs35823203991
    • (2014) Cereb Cortex , vol.24 , pp. 785-806
    • Potjans, T.C.1    Diesmann, M.2
  • 27
    • 84948449322 scopus 로고    scopus 로고
    • Principles of connectivity among morphologically defined cell types in adult neocortex
    • 26612957, .;:
    • Jiang X, Shen S, Cadwell CR, Berens P, Sinz F, Ecker AS, et al. Principles of connectivity among morphologically defined cell types in adult neocortex. 2015Science;350:aac9462. doi: 10.1126/science.aac946226612957
    • (2015) Science , vol.350 , pp. aac9462
    • Jiang, X.1    Shen, S.2    Cadwell, C.R.3    Berens, P.4    Sinz, F.5    Ecker, A.S.6
  • 28
    • 84884811455 scopus 로고    scopus 로고
    • A predictive network model of cerebral cortical connectivity based on a distance rule
    • 24094111, .;:–
    • Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, Knoblauch K, Toroczkai Z, et al. A predictive network model of cerebral cortical connectivity based on a distance rule. 2013Neuron;80:184–197. doi: 10.1016/j.neuron.2013.07.03624094111
    • (2013) Neuron , vol.80 , pp. 184-197
    • Ercsey-Ravasz, M.1    Markov, N.T.2    Lamy, C.3    Van Essen, D.C.4    Knoblauch, K.5    Toroczkai, Z.6
  • 29
    • 84890545141 scopus 로고    scopus 로고
    • A weighted and directed interareal connectivity matrix for macaque cerebral cortex
    • 23010748, .;:–
    • Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes aR, Lamy C, Magrou L, Vezoli J, et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. 2014Cereb Cortex;24:17–36. doi: 10.1093/cercor/bhs27023010748
    • (2014) Cereb Cortex , vol.24 , pp. 17-36
    • Markov, N.T.1    Ercsey-Ravasz, M.M.2    Ribeiro Gomes, R.3    Lamy, C.4    Magrou, L.5    Vezoli, J.6
  • 30
    • 84915748475 scopus 로고    scopus 로고
    • Spatial embedding of structural similarity in the cerebral cortex
    • 25368200, .;:–
    • Song HF, Kennedy H, Wang XJ, Spatial embedding of structural similarity in the cerebral cortex. 2014Proc Natl Acad Sci;111:16580–16585. doi: 10.1073/pnas.141415311125368200
    • (2014) Proc Natl Acad Sci , vol.111 , pp. 16580-16585
    • Song, H.F.1    Kennedy, H.2    Wang, X.J.3
  • 31
    • 68949147577 scopus 로고    scopus 로고
    • Generating coherent patterns of activity from chaotic neural networks
    • 19709635, .;:–
    • Sussillo D, Abbott LF, Generating coherent patterns of activity from chaotic neural networks. 2009Neuron;63:544–57. doi: 10.1016/j.neuron.2009.07.01819709635
    • (2009) Neuron , vol.63 , pp. 544-557
    • Sussillo, D.1    Abbott, L.F.2
  • 32
    • 84879686840 scopus 로고    scopus 로고
    • Robust timing and motor patterns by taming chaos in recurrent neural networks
    • 23708144, .;:–
    • Laje R, Buonomano DV, Robust timing and motor patterns by taming chaos in recurrent neural networks. 2013Nat Neurosci;16:925–33. doi: 10.1038/nn.340523708144
    • (2013) Nat Neurosci , vol.16 , pp. 925-933
    • Laje, R.1    Buonomano, D.V.2
  • 33
    • 80053451847 scopus 로고    scopus 로고
    • Martens J, Sutskever I. Learning recurrent neural networks with Hessian-free optimization. 2011 Proc 28th Int Conf Mach Learn;Available from:
    • Martens J, Sutskever I. Learning recurrent neural networks with Hessian-free optimization. 2011 Proc 28th Int Conf Mach Learn;Available from: http://www.icml-2011.org/papers/532_icmlpaper.pdf.
  • 34
    • 84875920967 scopus 로고    scopus 로고
    • rom fixed points to chaos: Three models of delayed discrimination
    • 23438479, .;:–
    • Barak O, Sussillo D, Romo R, Tsodyks M, Abbott LF, rom fixed points to chaos: Three models of delayed discrimination. 2013Prog Neurobiol;103:214–22. doi: 10.1016/j.pneurobio.2013.02.00223438479
    • (2013) Prog Neurobiol , vol.103 , pp. 214-222
    • Barak, O.1    Sussillo, D.2    Romo, R.3    Tsodyks, M.4    Abbott, L.F.5
  • 35
    • 84897497795 scopus 로고    scopus 로고
    • Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks. 2013 Proc 30th Int Conf Mach Learn;Available from:
    • Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks. 2013 Proc 30th Int Conf Mach Learn;Available from: http://jmlr.org/proceedings/papers/v28/pascanu13.pdf.
  • 36
    • 84890543516 scopus 로고    scopus 로고
    • Bengio Y, Boulanger-Lewandowski N, Pascanu R. Advances in optimizing recurrent networks. In: Proc. Int. Conf. Acoust. Speech, Signal Process.; 2013. Available from:
    • Bengio Y, Boulanger-Lewandowski N, Pascanu R. Advances in optimizing recurrent networks. In: Proc. Int. Conf. Acoust. Speech, Signal Process.; 2013. Available from: http://arxiv.org/pdf/1212.0901v2.pdf.
  • 37
    • 85026972913 scopus 로고    scopus 로고
    • Hardt M, Recht B, Singer Y. 2015 Train faster, generalize better: Stability of stochastic gradient descent;Available from:
    • Hardt M, Recht B, Singer Y. 2015 Train faster, generalize better: Stability of stochastic gradient descent;Available from: http://arxiv.org/abs/1509.01240.
  • 38
    • 33745818311 scopus 로고    scopus 로고
    • Spike timing-dependent plasticity: From synapse to perception
    • 16816145, .;p.–
    • Dan Y, Poo Mm, Spike timing-dependent plasticity: From synapse to perception. 2006Physiol Rev;p. 1033–1048. doi: 10.1152/physrev.00030.200516816145
    • (2006) Physiol Rev , pp. 1033-1048
    • Dan, Y.1    Poo, M.2
  • 39
    • 84959472246 scopus 로고    scopus 로고
    • Bengio Y. 2015 Towards biologically plausible deep learning;Available from:
    • Bengio Y. 2015 Towards biologically plausible deep learning;Available from: http://arxiv.org/abs/1502.0415.
  • 40
    • 84959530331 scopus 로고    scopus 로고
    • Bengio Y, Mesnard T, Fischer A, Zhang S, Wu Y. 2015 An objective function for STDP;Available from:
    • Bengio Y, Mesnard T, Fischer A, Zhang S, Wu Y. 2015 An objective function for STDP;Available from: http://arxiv.org/abs/1509.05936.
  • 41
    • 85026973093 scopus 로고    scopus 로고
    • Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, et al. Theano: A CPU and GPU math compiler in Python. In: Proc. 9th Python Sci. Conf. 2010; 2010. Available from:
    • Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, et al. Theano: A CPU and GPU math compiler in Python. In: Proc. 9th Python Sci. Conf. 2010; 2010. Available from: http://conference.scipy.org/proceedings/scipy2010/pdfs/bergstra.pdf.
  • 42
    • 84959469801 scopus 로고    scopus 로고
    • Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, et al. 2012 Theano: new features and speed improvements;Available from:
    • Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, et al. 2012 Theano: new features and speed improvements;Available from: http://arxiv.org/abs/1211.5590.
  • 43
    • 0032096386 scopus 로고    scopus 로고
    • On the piecewise analysis of networks of linear threshold neurons
    • 12662807, .;:–
    • Hahnloser RLT, On the piecewise analysis of networks of linear threshold neurons. 1998Neural Networks;11:691–697. doi: 10.1016/S0893-6080(98)00012-412662807
    • (1998) Neural Networks , vol.11 , pp. 691-697
    • Hahnloser, R.L.T.1
  • 44
    • 85083950242 scopus 로고    scopus 로고
    • Pascanu R, Montúfar G, Bengio Y. On the number of response regions of deep feedforward networks with piecewise linear activations. 2014 Int Conf Learn Represent;Available from:
    • Pascanu R, Montúfar G, Bengio Y. On the number of response regions of deep feedforward networks with piecewise linear activations. 2014 Int Conf Learn Represent;Available from: http://arxiv.org/pdf/1312.6098v5.pdf.
  • 46
    • 0007324878 scopus 로고    scopus 로고
    • The mathematics of Brownian motion and Johnson noise
    • .;:
    • Gillespie DT, The mathematics of Brownian motion and Johnson noise. 1996Am J Phys;64:225. doi: 10.1119/1.18210
    • (1996) Am J Phys , vol.64 , pp. 225
    • Gillespie, D.T.1
  • 47
    • 84876231469 scopus 로고    scopus 로고
    • Rats and humans can optimally accumulate evidence for decision-making
    • 23559254, .;:–
    • Brunton BW, Botvinick MM, Brody CD, Rats and humans can optimally accumulate evidence for decision-making. 2013Science;340:95–8. doi: 10.1126/science.123391223559254
    • (2013) Science , vol.340 , pp. 95-98
    • Brunton, B.W.1    Botvinick, M.M.2    Brody, C.D.3
  • 48
    • 84859768155 scopus 로고    scopus 로고
    • Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex
    • 22514322, .;:–
    • Levy RB, Reyes AD, Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex. 2012J Neurosci;32:5609–5619. doi: 10.1523/JNEUROSCI.5158-11.201222514322
    • (2012) J Neurosci , vol.32 , pp. 5609-5619
    • Levy, R.B.1    Reyes, A.D.2
  • 49
    • 0036716478 scopus 로고    scopus 로고
    • Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro
    • 12183393, .;:–
    • Thomson AM, West DC, Wang Y, Bannister AP, Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. 2002Cereb Cortex;12:936–953. doi: 10.1093/cercor/12.9.93612183393
    • (2002) Cereb Cortex , vol.12 , pp. 936-953
    • Thomson, A.M.1    West, D.C.2    Wang, Y.3    Bannister, A.P.4
  • 50
    • 4744358521 scopus 로고    scopus 로고
    • A quantitative map of the circuit of cat primary visual cortex
    • 15456817, .;:–
    • Binzegger T, Douglas RJ, Martin KAC, A quantitative map of the circuit of cat primary visual cortex. 2004J Neurosci;24:8441–53. doi: 10.1523/JNEUROSCI.1400-04.200415456817
    • (2004) J Neurosci , vol.24 , pp. 8441-8453
    • Binzegger, T.1    Douglas, R.J.2    Martin, K.A.C.3
  • 51
    • 0842320990 scopus 로고    scopus 로고
    • Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory
    • 14742867, .;:–
    • Wang XJ, Tegnér J, Constantinidis C, Goldman-Rakic PS, Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. 2004Proc Natl Acad Sci U S A;101:1368–1373. doi: 10.1073/pnas.030533710114742867
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 1368-1373
    • Wang, X.J.1    Tegnér, J.2    Constantinidis, C.3    Goldman-Rakic, P.S.4
  • 52
    • 84877753152 scopus 로고    scopus 로고
    • The logic of inhibitory connectivity in the neocortex
    • .;:–. Available from:
    • Fino E, Packer AM, Yuste R, The logic of inhibitory connectivity in the neocortex. 2012Neurosci;19:228–237. Available from: http://dx.doi.org/10.1177/1073858412456743.
    • (2012) Neurosci , vol.19 , pp. 228-237
    • Fino, E.1    Packer, A.M.2    Yuste, R.3
  • 53
    • 84892456790 scopus 로고    scopus 로고
    • A blanket of inhibition: Functional inferences from dense inhibitory connectivity
    • 24440415, .;:–
    • Karnani MM, Agetsuma M, Yuste R, A blanket of inhibition: Functional inferences from dense inhibitory connectivity. 2014Curr Opin Neurobiol;26:96–102. doi: 10.1016/j.conb.2013.12.01524440415
    • (2014) Curr Opin Neurobiol , vol.26 , pp. 96-102
    • Karnani, M.M.1    Agetsuma, M.2    Yuste, R.3
  • 54
    • 84937840019 scopus 로고    scopus 로고
    • Analog memories in a balanced rate-based network of E-I neurons
    • . In:;. Available from:
    • Festa D, Hennequin G, Analog memories in a balanced rate-based network of E-I neurons. In: Adv. Neural Inf. Process. Syst.; 2014. Available from: http://papers.nips.cc/paper/5336-analog-memories-in-a-balanced-rate-based-network-of-e-i-neurons.pdf.
    • (2014) Adv. Neural Inf. Process. Syst.
    • Festa, D.1    Hennequin, G.2
  • 55
    • 33750582231 scopus 로고    scopus 로고
    • Eigenvalue Spectra of Random Matrices for Neural Networks
    • 17155583, .;:
    • Rajan K, Abbott LF, Eigenvalue Spectra of Random Matrices for Neural Networks. 2006Phys Rev Lett;97:188104. doi: 10.1103/PhysRevLett.97.18810417155583
    • (2006) Phys Rev Lett , vol.97 , pp. 188104
    • Rajan, K.1    Abbott, L.F.2
  • 57
    • 84897510162 scopus 로고    scopus 로고
    • Sutskever I, Martens J, Dahl G, Hinton G. On the importance of initialization and momentum in deep learning. In: Proc. 30th Int. Conf. Mach. Learn. IEEE; 2013. Available from:
    • Sutskever I, Martens J, Dahl G, Hinton G. On the importance of initialization and momentum in deep learning. In: Proc. 30th Int. Conf. Mach. Learn. IEEE; 2013. Available from: http://www.cs.utoronto.ca/~ilya/pubs/2013/1051_2.pdf.
  • 60
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • 18267787, .;:–
    • Bengio Y, Simard P, Frasconi P, Learning long-term dependencies with gradient descent is difficult. 1994IEEE Trans Neural Networks;5:157–166. doi: 10.1109/72.27918118267787
    • (1994) IEEE Trans Neural Networks , vol.5 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 61
    • 0024416635 scopus 로고
    • Neuronal correlates of a perceptual decision
    • 2770878, .;:–
    • Newsome WT, Britten KH, Movshon Ja, Neuronal correlates of a perceptual decision. 1989Nature;341:52–54. doi: 10.1038/341052a02770878
    • (1989) Nature , vol.341 , pp. 52-54
    • Newsome, W.T.1    Britten, K.H.2    Movshon, J.3
  • 62
    • 0036850727 scopus 로고    scopus 로고
    • Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task
    • 12417672, .;:–. Available from:
    • Roitman JD, Shadlen MN, Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. 2002J Neurosci;22:9475–89. Available from: http://www.jneurosci.org/content/22/21/9475.long. 12417672
    • (2002) J Neurosci , vol.22 , pp. 9475-9489
    • Roitman, J.D.1    Shadlen, M.N.2
  • 63
    • 41149144550 scopus 로고    scopus 로고
    • Bounded integration in parietal cortex underlies decisions even when viewing duration is dictated by the environment
    • 18354005, .;:–
    • Kiani R, Hanks TD, Shadlen MN, Bounded integration in parietal cortex underlies decisions even when viewing duration is dictated by the environment. 2008J Neurosci;28:3017–3029. doi: 10.1523/JNEUROSCI.4761-07.200818354005
    • (2008) J Neurosci , vol.28 , pp. 3017-3029
    • Kiani, R.1    Hanks, T.D.2    Shadlen, M.N.3
  • 64
    • 84926204605 scopus 로고    scopus 로고
    • A category-free neural population supports evolving demands during decision-making
    • 25383902, .;:–
    • Raposo D, Kaufman MT, Churchland AK, A category-free neural population supports evolving demands during decision-making. 2014Nat Neurosci;17:1784–1792. doi: 10.1038/nn.386525383902
    • (2014) Nat Neurosci , vol.17 , pp. 1784-1792
    • Raposo, D.1    Kaufman, M.T.2    Churchland, A.K.3
  • 65
    • 0033519704 scopus 로고    scopus 로고
    • Neuronal correlates of parametric working memory in the prefrontal cortex
    • 10365959, .;:–
    • Romo R, Brody CD, Hernández A, Lemus L, Neuronal correlates of parametric working memory in the prefrontal cortex. 1999Nature;399:470–473. doi: 10.1038/2093910365959
    • (1999) Nature , vol.399 , pp. 470-473
    • Romo, R.1    Brody, C.D.2    Hernández, A.3    Lemus, L.4
  • 66
    • 33847347576 scopus 로고    scopus 로고
    • Prefrontal neural correlates of memory for sequences
    • 17329417, .;:–
    • Averbeck BB, Lee D, Prefrontal neural correlates of memory for sequences. 2007J Neurosci;27:2204–2211. doi: 10.1523/JNEUROSCI.4483-06.200717329417
    • (2007) J Neurosci , vol.27 , pp. 2204-2211
    • Averbeck, B.B.1    Lee, D.2
  • 67
    • 32544439341 scopus 로고    scopus 로고
    • A recurrent network mechanism of time integration in perceptual decisions
    • 16436619, .;:–
    • Wong KF, Wang XJ, A recurrent network mechanism of time integration in perceptual decisions. 2006J Neurosci;26:1314–1328. doi: 10.1523/JNEUROSCI.3733-05.200616436619
    • (2006) J Neurosci , vol.26 , pp. 1314-1328
    • Wong, K.F.1    Wang, X.J.2
  • 68
    • 0142250860 scopus 로고    scopus 로고
    • A recurrent network model of somatosensory parametric working memory in the prefrontal cortex
    • 14576212, .;:–
    • Miller P, Brody CD, Romo R, Wang XJ, A recurrent network model of somatosensory parametric working memory in the prefrontal cortex. 2003Cereb Cortex;13:1208–1218. doi: 10.1093/cercor/bhg10114576212
    • (2003) Cereb Cortex , vol.13 , pp. 1208-1218
    • Miller, P.1    Brody, C.D.2    Romo, R.3    Wang, X.J.4
  • 69
    • 0033232525 scopus 로고    scopus 로고
    • Synaptic basis of cortical persistent activity: The importance of NMDA receptors to working memory
    • 10531461, .;:–. Available from:
    • Wang XJ, Synaptic basis of cortical persistent activity: The importance of NMDA receptors to working memory. 1999J Neurosci;19:9587–9603. Available from: http://www.jneurosci.org/content/19/21/9587.long. 10531461
    • (1999) J Neurosci , vol.19 , pp. 9587-9603
    • Wang, X.J.1
  • 70
    • 84889569838 scopus 로고    scopus 로고
    • Working models of working memory
    • 24709596, .;:–
    • Barak O, Tsodyks M, Working models of working memory. 2014Curr Opin Neurobiol;25:20–4. doi: 10.1016/j.conb.2013.10.00824709596
    • (2014) Curr Opin Neurobiol , vol.25 , pp. 20-24
    • Barak, O.1    Tsodyks, M.2
  • 71
    • 0024574176 scopus 로고
    • Mnemonic coding of visual space in the monkey x2019;s dorsolateral prefrontal cortex
    • 2918358, .;:–. Available from:
    • Funahashi S, Bruce CJ, Goldman-Rakic PS, Mnemonic coding of visual space in the monkey x2019;s dorsolateral prefrontal cortex. 1989J Neurophysiol;61:331–349. Available from: http://jn.physiology.org/content/61/2/331.long. 2918358
    • (1989) J Neurophysiol , vol.61 , pp. 331-349
    • Funahashi, S.1    Bruce, C.J.2    Goldman-Rakic, P.S.3
  • 72
    • 0031573117 scopus 로고    scopus 로고
    • Long Short-Term Memory
    • 9377276, .;:–
    • Hochreiter S, Schmidhuber J, Long Short-Term Memory. 1997Neural Comput;9:1735–1780. doi: 10.1162/neco.1997.9.8.17359377276
    • (1997) Neural Comput , vol.9 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 73
  • 74
    • 84921341410 scopus 로고    scopus 로고
    • The stabilized supralinear network: A unifying circuit motif underlying multi-input integration in sensory cortex
    • .;:–. Available from:
    • Rubin DB, Hooser SDV, Miller KD, The stabilized supralinear network: A unifying circuit motif underlying multi-input integration in sensory cortex. 2013Neuron;85:1–51. Available from: http://dx.doi.org/10.1016/j.neuron.2014.12.026.
    • (2013) Neuron , vol.85 , pp. 1-51
    • Rubin, D.B.1    Hooser, S.D.V.2    Miller, K.D.3
  • 76
    • 84899015857 scopus 로고    scopus 로고
    • Reinforcement learning with Long Short-Term Memory
    • .;Available from:
    • Bakker B, Reinforcement learning with Long Short-Term Memory. 2002Adv Neural Inf Process Syst;Available from: http://papers.nips.cc/paper/1953-reinforcement-learning-with-long-short-term-memory.pdf.
    • (2002) Adv Neural Inf Process Syst
    • Bakker, B.1
  • 77
    • 23944437453 scopus 로고    scopus 로고
    • Attention-gated reinforcement learning of internal representations for classification
    • 16105222, .;:–
    • Roelfsema PR, van Ooyen A, Attention-gated reinforcement learning of internal representations for classification. 2005Neural Comput;17:2176–2214. doi: 10.1162/089976605461569916105222
    • (2005) Neural Comput , vol.17 , pp. 2176-2214
    • Roelfsema, P.R.1    van Ooyen, A.2
  • 78
    • 34948906745 scopus 로고    scopus 로고
    • Solving the Distal Reward Problem through Linkage of STDP and Dopamine Signaling
    • 17220510, .;:–
    • Izhikevich EM, Solving the Distal Reward Problem through Linkage of STDP and Dopamine Signaling. 2007Cereb Cortex;17:2443–2452. doi: 10.1093/cercor/bhl15217220510
    • (2007) Cereb Cortex , vol.17 , pp. 2443-2452
    • Izhikevich, E.M.1
  • 79
    • 67650298948 scopus 로고    scopus 로고
    • A Spiking Neural Network Model of an Actor-Critic Agent
    • 19196231, .;:–
    • Potjans W, Morrison A, Diesmann M, A Spiking Neural Network Model of an Actor-Critic Agent. 2009Neural Comput;21:301–339. doi: 10.1162/neco.2008.08-07-59319196231
    • (2009) Neural Comput , vol.21 , pp. 301-339
    • Potjans, W.1    Morrison, A.2    Diesmann, M.3
  • 80
    • 84887535941 scopus 로고    scopus 로고
    • Reinforcement learning of two-joint arm reaching in a computer model of sensorimotor cortex
    • 24047323, .;:–. Available from:
    • Neymotin SA, Chadderdon GL, Kerr CC, Francis JT, Lytton WW, Reinforcement learning of two-joint arm reaching in a computer model of sensorimotor cortex. 2013Neural Comput;25:3263–3293. Available from: http://dx.doi.org/10.1162/NECO. doi: 10.1162/NECO_a_0052124047323
    • (2013) Neural Comput , vol.25 , pp. 3263-3293
    • Neymotin, S.A.1    Chadderdon, G.L.2    Kerr, C.C.3    Francis, J.T.4    Lytton, W.W.5
  • 81
    • 0141749203 scopus 로고    scopus 로고
    • A universal model for spike-frequency adaptation
    • 14577853, .;:–
    • Benda J, Herz AVM, A universal model for spike-frequency adaptation. 2003Neural Comput;15:2523–2564. doi: 10.1162/08997660332238506314577853
    • (2003) Neural Comput , vol.15 , pp. 2523-2564
    • Benda, J.1    Herz, A.V.M.2
  • 82
    • 79956326258 scopus 로고    scopus 로고
    • Same or different? A neural circuit mechanism of similarity-based pattern match decision making
    • 21562260, .;:–
    • Engel TA, Wang XJ, Same or different? A neural circuit mechanism of similarity-based pattern match decision making. 2011J Neurosci;31:6982–6996. doi: 10.1523/JNEUROSCI.6150-10.201121562260
    • (2011) J Neurosci , vol.31 , pp. 6982-6996
    • Engel, T.A.1    Wang, X.J.2
  • 83
    • 84877827546 scopus 로고    scopus 로고
    • Opening the black box: Low-dimensional dynamics in high-dimensional recurrent neural networks
    • 23272922, .;:–
    • Sussillo D, Barak O, Opening the black box: Low-dimensional dynamics in high-dimensional recurrent neural networks. 2013Neural Comput;25:626–49. doi: 10.1162/NECO_a_0040923272922
    • (2013) Neural Comput , vol.25 , pp. 626-649
    • Sussillo, D.1    Barak, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.