메뉴 건너뛰기




Volumn 16, Issue 7, 2013, Pages 925-933

Robust timing and motor patterns by taming chaos in recurrent neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CHAOTIC DYNAMICS; FEEDBACK SYSTEM; HYPOTHESIS; NERVE CELL NETWORK; NERVE CELL PLASTICITY; NOISE; NORMAL DISTRIBUTION; PRIORITY JOURNAL; PSYCHOMOTOR ACTIVITY; REPRODUCIBILITY; SPATIOTEMPORAL ANALYSIS; TIME; TIME SERIES ANALYSIS; TRAINING;

EID: 84879686840     PISSN: 10976256     EISSN: 15461726     Source Type: Journal    
DOI: 10.1038/nn.3405     Document Type: Article
Times cited : (388)

References (55)
  • 1
    • 3943100746 scopus 로고    scopus 로고
    • The neural basis of temporal processing
    • Mauk, M.D. & Buonomano, D.V. The neural basis of temporal processing. Annu. Rev. Neurosci. 27, 307-340 (2004).
    • (2004) Annu. Rev. Neurosci. , vol.27 , pp. 307-340
    • Mauk, M.D.1    Buonomano, D.V.2
  • 2
    • 27944431681 scopus 로고    scopus 로고
    • What makes us tick? Functional and neural mechanisms of interval timing
    • Buhusi, C.V. & Meck, W.H. What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci. 6, 755-765 (2005).
    • (2005) Nat. Rev. Neurosci. , vol.6 , pp. 755-765
    • Buhusi, C.V.1    Meck, W.H.2
  • 3
    • 45849089539 scopus 로고    scopus 로고
    • Dedicated and intrinsic models of time perception
    • Ivry, R.B. & Schlerf, J.E. Dedicated and intrinsic models of time perception. Trends Cogn. Sci. 12, 273-280 (2008).
    • (2008) Trends Cogn. Sci. , vol.12 , pp. 273-280
    • Ivry, R.B.1    Schlerf, J.E.2
  • 5
    • 0038159255 scopus 로고    scopus 로고
    • Self-organizing neural integrator predicts interval times through climbing activity
    • Durstewitz, D. Self-organizing neural integrator predicts interval times through climbing activity. J. Neurosci. 23, 5342-5353 (2003).
    • (2003) J. Neurosci. , vol.23 , pp. 5342-5353
    • Durstewitz, D.1
  • 7
    • 0000329484 scopus 로고
    • The storage of time intervals using oscillating neurons
    • Miall, C. The storage of time intervals using oscillating neurons. Neural Comput. 1, 359-371 (1989).
    • (1989) Neural Comput. , vol.1 , pp. 359-371
    • Miall, C.1
  • 8
    • 0042666924 scopus 로고    scopus 로고
    • Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons
    • Matell, M.S., Meck, W.H. & Nicolelis, M.A. Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behav. Neurosci. 117, 760-773 (2003).
    • (2003) Behav. Neurosci. , vol.117 , pp. 760-773
    • Matell, M.S.1    Meck, W.H.2    Nicolelis, M.A.3
  • 9
    • 79651475817 scopus 로고    scopus 로고
    • Observers exploit stochastic models of sensory change to help judge the passage of time
    • Ahrens, M.B. & Sahani, M. Observers exploit stochastic models of sensory change to help judge the passage of time. Curr. Biol. 21, 200-206 (2011).
    • (2011) Curr. Biol. , vol.21 , pp. 200-206
    • Ahrens, M.B.1    Sahani, M.2
  • 10
    • 78649443168 scopus 로고    scopus 로고
    • Population clocks: Motor timing with neural dynamics
    • Buonomano, D.V. & Laje, R. Population clocks: motor timing with neural dynamics. Trends Cogn. Sci. 14, 520-527 (2010).
    • (2010) Trends Cogn. Sci. , vol.14 , pp. 520-527
    • Buonomano, D.V.1    Laje, R.2
  • 11
    • 0033661780 scopus 로고    scopus 로고
    • Computer simulation of cerebellar information processing
    • Medina, J.F. & Mauk, M.D. Computer simulation of cerebellar information processing. Nat. Neurosci. 3 (suppl.), 1205-1211 (2000).
    • (2000) Nat. Neurosci. , vol.3 , Issue.SUPPL. , pp. 1205-1211
    • Medina, J.F.1    Mauk, M.D.2
  • 12
    • 0002538402 scopus 로고
    • Neural network model of the cerebellum: Temporal discrimination and the timing of motor responses
    • Buonomano, D.V. & Mauk, M.D. Neural network model of the cerebellum: temporal discrimination and the timing of motor responses. Neural Comput. 6, 38-55 (1994).
    • (1994) Neural Comput. , vol.6 , pp. 38-55
    • Buonomano, D.V.1    Mauk, M.D.2
  • 13
    • 0028910018 scopus 로고
    • Temporal information transformed into a spatial code by a neural network with realistic properties
    • Buonomano, D.V. & Merzenich, M.M. Temporal information transformed into a spatial code by a neural network with realistic properties. Science 267, 1028-1030 (1995).
    • (1995) Science , vol.267 , pp. 1028-1030
    • Buonomano, D.V.1    Merzenich, M.M.2
  • 14
    • 37749002295 scopus 로고    scopus 로고
    • Computational significance of transient dynamics in cortical networks
    • Durstewitz, D. & Deco, G. Computational significance of transient dynamics in cortical networks. Eur. J. Neurosci. 27, 217-227 (2008).
    • (2008) Eur. J. Neurosci. , vol.27 , pp. 217-227
    • Durstewitz, D.1    Deco, G.2
  • 15
    • 46849100436 scopus 로고    scopus 로고
    • Transient dynamics for neural processing
    • Rabinovich, M., Huerta, R. & Laurent, G. Transient dynamics for neural processing. Science 321, 48-50 (2008).
    • (2008) Science , vol.321 , pp. 48-50
    • Rabinovich, M.1    Huerta, R.2    Laurent, G.3
  • 16
    • 58549091090 scopus 로고    scopus 로고
    • State-dependent computations: Spatiotemporal processing in cortical networks
    • Buonomano, D.V. & Maass, W. State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10, 113-125 (2009).
    • (2009) Nat. Rev. Neurosci. , vol.10 , pp. 113-125
    • Buonomano, D.V.1    Maass, W.2
  • 17
    • 0037026530 scopus 로고    scopus 로고
    • An ultra-sparse code underlies the generation of neural sequence in a songbird
    • Hahnloser, R.H.R., Kozhevnikov, A.A. & Fee, M.S. An ultra-sparse code underlies the generation of neural sequence in a songbird. Nature 419, 65-70 (2002).
    • (2002) Nature , vol.419 , pp. 65-70
    • Hahnloser, R.H.R.1    Kozhevnikov, A.A.2    Fee, M.S.3
  • 18
    • 78549267109 scopus 로고    scopus 로고
    • Support for a synaptic chain model of neuronal sequence generation
    • Long, M.A., Jin, D.Z. & Fee, M.S. Support for a synaptic chain model of neuronal sequence generation. Nature 468, 394-399 (2010).
    • (2010) Nature , vol.468 , pp. 394-399
    • Long, M.A.1    Jin, D.Z.2    Fee, M.S.3
  • 19
    • 77956238397 scopus 로고    scopus 로고
    • Rapid sequences of population activity patterns dynamically encode task-critical spatial information in parietal cortex
    • Crowe, D.A., Averbeck, B.B. & Chafee, M.V. Rapid sequences of population activity patterns dynamically encode task-critical spatial information in parietal cortex. J. Neurosci. 30, 11640-11653 (2010).
    • (2010) J. Neurosci. , vol.30 , pp. 11640-11653
    • Crowe, D.A.1    Averbeck, B.B.2    Chafee, M.V.3
  • 20
    • 78650956767 scopus 로고    scopus 로고
    • Learned timing of motor behavior in the smooth eye movement region of the frontal eye fields
    • Li, J.X. & Lisberger, S.G. Learned timing of motor behavior in the smooth eye movement region of the frontal eye fields. Neuron 69, 159-169 (2011).
    • (2011) Neuron , vol.69 , pp. 159-169
    • Li, J.X.1    Lisberger, S.G.2
  • 21
    • 77954231844 scopus 로고    scopus 로고
    • Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex
    • London, M., Roth, A., Beeren, L., Hausser, M. & Latham, P.E. Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature 466, 123-127 (2010).
    • (2010) Nature , vol.466 , pp. 123-127
    • London, M.1    Roth, A.2    Beeren, L.3    Hausser, M.4    Latham, P.E.5
  • 22
    • 42149192537 scopus 로고    scopus 로고
    • Large-scale model of mammalian thalamocortical systems
    • Izhikevich, E.M. & Edelman, G.M. Large-scale model of mammalian thalamocortical systems. Proc. Natl. Acad. Sci. USA 105, 3593-3598 (2008).
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 3593-3598
    • Izhikevich, E.M.1    Edelman, G.M.2
  • 23
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in neuronal networks with balanced excitatory and inhibitory activity
    • van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724-1726 (1996).
    • (1996) Science , vol.274 , pp. 1724-1726
    • Van Vreeswijk, C.1    Sompolinsky, H.2
  • 24
    • 0034487599 scopus 로고    scopus 로고
    • Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons
    • Brunel, N. Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons. J. Physiol. Paris 94, 445-463 (2000).
    • (2000) J. Physiol. Paris , vol.94 , pp. 445-463
    • Brunel, N.1
  • 25
    • 41849095655 scopus 로고    scopus 로고
    • Dynamical constraints on using precise spike timing to compute in recurrent cortical networks
    • Banerjee, A., Series, P. & Pouget, A. Dynamical constraints on using precise spike timing to compute in recurrent cortical networks. Neural Comput. 20, 974-993 (2008).
    • (2008) Neural Comput. , vol.20 , pp. 974-993
    • Banerjee, A.1    Series, P.2    Pouget, A.3
  • 27
    • 84872392824 scopus 로고    scopus 로고
    • Dynamic flux tubes form reservoirs of stability in neuronal circuits
    • Monteforte, M. & Wolf, F. Dynamic flux tubes form reservoirs of stability in neuronal circuits. Phys. Rev. X 2, 041007 (2012).
    • (2012) Phys. Rev. X , vol.2 , pp. 041007
    • Monteforte, M.1    Wolf, F.2
  • 28
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, 78-80 (2004).
    • (2004) Science , vol.304 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 29
    • 68949147577 scopus 로고    scopus 로고
    • Generating coherent patterns of activity from chaotic neural networks
    • Sussillo, D. & Abbott, L.F. Generating coherent patterns of activity from chaotic neural networks. Neuron 63, 544-557 (2009).
    • (2009) Neuron , vol.63 , pp. 544-557
    • Sussillo, D.1    Abbott, L.F.2
  • 32
    • 34249859348 scopus 로고    scopus 로고
    • Special issue on echo state networks and liquid state machines
    • Jaeger, H., Maass, W. & Principe, J. Special issue on echo state networks and liquid state machines. Neural Netw. 20, 287-289 (2007).
    • (2007) Neural Netw. , vol.20 , pp. 287-289
    • Jaeger, H.1    Maass, W.2    Principe, J.3
  • 34
    • 77649187675 scopus 로고    scopus 로고
    • Stimulus onset quenches neural variability: A widespread cortical phenomenon
    • Churchland, M.M. et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13, 369-378 (2010).
    • (2010) Nat. Neurosci. , vol.13 , pp. 369-378
    • Churchland, M.M.1
  • 35
    • 18044383304 scopus 로고    scopus 로고
    • Highly nonrandom feature of synaptic connectivity in local cortical circuits
    • Song, S., Sjostrom, P.J., Reigl, M., Nelson, S. & Chklovskii, D.B. Highly nonrandom feature of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e66 (2005).
    • (2005) PLoS Biol. , vol.3
    • Song, S.1    Sjostrom, P.J.2    Reigl, M.3    Nelson, S.4    Chklovskii, D.B.5
  • 36
    • 0032482432 scopus 로고    scopus 로고
    • Collective Dynamics of 'small-world' networks
    • Watts, D.J. & Strogatz, S.H. Collective dynamics of 'small-world' networks. Nature 393, 440-442 (1998).
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 37
    • 13244291585 scopus 로고    scopus 로고
    • A representation of the hazard rate of elapsed time in the macaque area LIP
    • Janssen, P. & Shadlen, M.N. A representation of the hazard rate of elapsed time in the macaque area LIP. Nat. Neurosci. 8, 234-241 (2005).
    • (2005) Nat. Neurosci. , vol.8 , pp. 234-241
    • Janssen, P.1    Shadlen, M.N.2
  • 38
    • 84865365071 scopus 로고    scopus 로고
    • Learning about time: Plastic changes and interindividual brain differences
    • Bueti, D., Lasaponara, S., Cercignani, M. & Macaluso, E. Learning about time: plastic changes and interindividual brain differences. Neuron 75, 725-737 (2012).
    • (2012) Neuron , vol.75 , pp. 725-737
    • Bueti, D.1    Lasaponara, S.2    Cercignani, M.3    Macaluso, E.4
  • 39
    • 52249096586 scopus 로고    scopus 로고
    • Dissociating explicit timing from temporal expectation with fMRI
    • Coull, J. & Nobre, A. Dissociating explicit timing from temporal expectation with fMRI. Curr. Opin. Neurobiol. 18, 137-144 (2008).
    • (2008) Curr. Opin. Neurobiol. , vol.18 , pp. 137-144
    • Coull, J.1    Nobre, A.2
  • 40
    • 83755183139 scopus 로고    scopus 로고
    • Measuring time with different neural chronometers during a synchronization-continuation task
    • Merchant, H., Zarco, W., Pérez, O., Prado, L. & Bartolo, R. Measuring time with different neural chronometers during a synchronization- continuation task. Proc. Natl. Acad. Sci. USA 108, 19784-19789 (2011).
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 19784-19789
    • Merchant, H.1    Zarco, W.2    Pérez, O.3    Prado, L.4    Bartolo, R.5
  • 41
    • 51149102880 scopus 로고    scopus 로고
    • Internally generated cell assembly sequences in the rat hippocampus
    • Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsaki, G. Internally generated cell assembly sequences in the rat hippocampus. Science 321, 1322-1327 (2008).
    • (2008) Science , vol.321 , pp. 1322-1327
    • Pastalkova, E.1    Itskov, V.2    Amarasingham, A.3    Buzsaki, G.4
  • 42
    • 0023794203 scopus 로고
    • Dissociation of the lateral and medial cerebellum in movement timing and movement execution
    • Ivry, R.B., Keele, S.W. & Diener, H.C. Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp. Brain Res. 73, 167-180 (1988).
    • (1988) Exp. Brain Res. , vol.73 , pp. 167-180
    • Ivry, R.B.1    Keele, S.W.2    Diener, H.C.3
  • 43
    • 0034662097 scopus 로고    scopus 로고
    • Timing mechanisms in the cerebellum: Testing predictions of a large-scale computer simulation
    • Medina, J.F., Garcia, K.S., Nores, W.L., Taylor, N.M. & Mauk, M.D. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J. Neurosci. 20, 5516-5525 (2000).
    • (2000) J. Neurosci. , vol.20 , pp. 5516-5525
    • Medina, J.F.1    Garcia, K.S.2    Nores, W.L.3    Taylor, N.M.4    Mauk, M.D.5
  • 44
    • 0034143330 scopus 로고    scopus 로고
    • Decoding temporal information: A model based on short-term synaptic plasticity
    • Buonomano, D.V. Decoding temporal information: a model based on short-term synaptic plasticity. J. Neurosci. 20, 1129-1141 (2000).
    • (2000) J. Neurosci. , vol.20 , pp. 1129-1141
    • Buonomano, D.V.1
  • 45
    • 84868159004 scopus 로고    scopus 로고
    • Slow dynamics and high variability in balanced cortical networks with clustered connections
    • Litwin-Kumar, A. & Doiron, B. Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat. Neurosci. 15, 1498-1505 (2012).
    • (2012) Nat. Neurosci. , vol.15 , pp. 1498-1505
    • Litwin-Kumar, A.1    Doiron, B.2
  • 46
    • 70350336841 scopus 로고    scopus 로고
    • Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner
    • Liu, J.K. & Buonomano, D.V. Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner. J. Neurosci. 29, 13172-13181 (2009).
    • (2009) J. Neurosci. , vol.29 , pp. 13172-13181
    • Liu, J.K.1    Buonomano, D.V.2
  • 47
    • 60449111240 scopus 로고    scopus 로고
    • Memory without feedback in a neural network
    • Goldman, M.S. Memory without feedback in a neural network. Neuron 61, 621-634 (2009).
    • (2009) Neuron , vol.61 , pp. 621-634
    • Goldman, M.S.1
  • 48
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554-2558 (1982).
    • (1982) Proc. Natl. Acad. Sci. USA , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 49
    • 0035426435 scopus 로고    scopus 로고
    • Synaptic reverberation underlying mnemonic persistent activity
    • Wang, X.J. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 24, 455-463 (2001).
    • (2001) Trends Neurosci. , vol.24 , pp. 455-463
    • Wang, X.J.1
  • 50
    • 84973949757 scopus 로고
    • How brains make chaos in order to make sense of the world
    • Skarda, C.A. & Freeman, W.J. How brains make chaos in order to make sense of the world. Behav. Brain Sci. 10, 161-173 (1987).
    • (1987) Behav. Brain Sci. , vol.10 , pp. 161-173
    • Skarda, C.A.1    Freeman, W.J.2
  • 51
    • 1842436050 scopus 로고    scopus 로고
    • The "echo state" approach to analysing and training recurrent neural networks
    • Report No. 148 (German National Research Center for Computer Science)
    • Jaeger, H. The "echo state" approach to analysing and training recurrent neural networks. GMD Report No. 148 (German National Research Center for Computer Science) (2001).
    • (2001) GMD
    • Jaeger, H.1
  • 53
    • 0001870258 scopus 로고
    • A robust method to estimate the maximal Lyapunov exponent of a time series
    • Kantz, H. A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185, 77-87 (1994).
    • (1994) Phys. Lett. A , vol.185 , pp. 77-87
    • Kantz, H.1
  • 54
    • 0035499303 scopus 로고    scopus 로고
    • Detecting barriers to transport: A review of different techniques
    • Boffetta, G., Lacorata, G., Radaelli, G. & Vulpiani, A. Detecting barriers to transport: a review of different techniques. Physica D 159, 58-70 (2001).
    • (2001) Physica D , vol.159 , pp. 58-70
    • Boffetta, G.1    Lacorata, G.2    Radaelli, G.3    Vulpiani, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.