-
2
-
-
0030344230
-
Heuristics of instability and stabilization in model selection
-
Breiman L. Heuristics of instability and stabilization in model selection. The Annals of Statistics 1996; 24(6):2350-2383.
-
(1996)
The Annals of Statistics
, vol.24
, Issue.6
, pp. 2350-2383
-
-
Breiman, L.1
-
3
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 2001; 96:1348-1360.
-
(2001)
Journal of the American Statistical Association
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
4
-
-
0017280570
-
The analysis and selection of variables in linear regression
-
Hocking R. The analysis and selection of variables in linear regression. The Annals of Statistics 1976; 32(1):1-49.
-
(1976)
The Annals of Statistics
, vol.32
, Issue.1
, pp. 1-49
-
-
Hocking, R.1
-
9
-
-
84942484786
-
Ridge regression: biased estimation for nonorthogonal problems
-
Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970; 12(1):55-67.
-
(1970)
Technometrics
, vol.12
, Issue.1
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
11
-
-
84952149204
-
A statistical view of some chemometrics regression tools
-
Frank IE, Friedman JH.A statistical view of some chemometrics regression tools. Technometrics 1993; 35(2):109-135.
-
(1993)
Technometrics
, vol.35
, Issue.2
, pp. 109-135
-
-
Frank, I.E.1
Friedman, J.H.2
-
13
-
-
0001729472
-
Calibration and empirical Bayes variable selection
-
George EI, Foster DP. Calibration and empirical Bayes variable selection. Biometrika 2000; 87:731-747.
-
(2000)
Biometrika
, vol.87
, pp. 731-747
-
-
George, E.I.1
Foster, D.P.2
-
15
-
-
0042744696
-
Detecting differentially expressed genes in microarrays using Bayesian model selection
-
Ishwaran H, Rao JS. Detecting differentially expressed genes in microarrays using Bayesian model selection. Journal of the American Statistical Association 2003; 98(462):438-455.
-
(2003)
Journal of the American Statistical Association
, vol.98
, Issue.462
, pp. 438-455
-
-
Ishwaran, H.1
Rao, J.S.2
-
18
-
-
0031526204
-
Approaches for Bayesian variable selection
-
George EI, McCulloch RE. Approaches for Bayesian variable selection. Statistica Sinica 1997; 7(2):339-373.
-
(1997)
Statistica Sinica
, vol.7
, Issue.2
, pp. 339-373
-
-
George, E.I.1
McCulloch, R.E.2
-
19
-
-
84950945692
-
Model selection and accounting for model uncertainty in graphical models using Occam's window
-
Madigan D, Raftery A, Wermuth N, York J, Zucchini W. Model selection and accounting for model uncertainty in graphical models using Occam's window. Journal of the American Statistical Association 1994; 89:1535-1546.
-
(1994)
Journal of the American Statistical Association
, vol.89
, pp. 1535-1546
-
-
Madigan, D.1
Raftery, A.2
Wermuth, N.3
York, J.4
Zucchini, W.5
-
21
-
-
5744249209
-
Equation of state calculations by fast computing machines
-
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. The Journal of Chemical Physics 1953; 21(6):1087-1092.
-
(1953)
The Journal of Chemical Physics
, vol.21
, Issue.6
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
22
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970; 57(1):97-109.
-
(1970)
Biometrika
, vol.57
, Issue.1
, pp. 97-109
-
-
Hastings, W.K.1
-
23
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz G. Estimating the dimension of a model. The Annals of Statistics 1978; 6(2):461-464.
-
(1978)
The Annals of Statistics
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.1
-
25
-
-
79951540621
-
Evolutionary stochastic search for Bayesian model exploration
-
Bottolo L, Richardson S. Evolutionary stochastic search for Bayesian model exploration. Bayesian Analysis 2010; 5(3):583-618.
-
(2010)
Bayesian Analysis
, vol.5
, Issue.3
, pp. 583-618
-
-
Bottolo, L.1
Richardson, S.2
-
26
-
-
77956889087
-
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
-
Green P. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 1995; 82:711-732.
-
(1995)
Biometrika
, vol.82
, pp. 711-732
-
-
Green, P.1
-
27
-
-
79956298783
-
Shrinkage regression for multivariate inference with missing data, and an application to portfolio balancing
-
Gramacy RB, Pantaleo E. Shrinkage regression for multivariate inference with missing data, and an application to portfolio balancing. Bayesian Analysis 2010; 5:237-262.
-
(2010)
Bayesian Analysis
, vol.5
, pp. 237-262
-
-
Gramacy, R.B.1
Pantaleo, E.2
-
30
-
-
22944460748
-
Spike and slab variable selection: frequentist and Bayesian strategies
-
Ishwaran H, Rao JS. Spike and slab variable selection: frequentist and Bayesian strategies. The Annals of Statistics 2005; 33(2):730-773.
-
(2005)
The Annals of Statistics
, vol.33
, Issue.2
, pp. 730-773
-
-
Ishwaran, H.1
Rao, J.S.2
-
31
-
-
3543030265
-
Needles and straw in haystacks: empirical Bayes estimates of possibly sparse sequences
-
Johnstone IM, Silverman BW. Needles and straw in haystacks: empirical Bayes estimates of possibly sparse sequences. The Annals of Statistics 2004; 32:1594-1649.
-
(2004)
The Annals of Statistics
, vol.32
, pp. 1594-1649
-
-
Johnstone, I.M.1
Silverman, B.W.2
-
35
-
-
77953326052
-
Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection
-
Fahrmeir L, Kneib T, Konrath S. Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection. Statistics and Computing 2010; 20(2):203-219.
-
(2010)
Statistics and Computing
, vol.20
, Issue.2
, pp. 203-219
-
-
Fahrmeir, L.1
Kneib, T.2
Konrath, S.3
-
38
-
-
78650337471
-
Inference with normal-gamma prior distributions in regression problems
-
Griffin JE, Brown PJ. Inference with normal-gamma prior distributions in regression problems. Bayesian Analysis 2010; 5:17-188.
-
(2010)
Bayesian Analysis
, vol.5
, pp. 17-188
-
-
Griffin, J.E.1
Brown, P.J.2
-
39
-
-
12344304266
-
Gene selection using a two-level hierarchical Bayesian model
-
Bae K, Mallick BK. Gene selection using a two-level hierarchical Bayesian model. Bioinformatics 2004; 20(18):3423-3430.
-
(2004)
Bioinformatics
, vol.20
, Issue.18
, pp. 3423-3430
-
-
Bae, K.1
Mallick, B.K.2
-
42
-
-
77953359190
-
Model uncertainty and variable selection in Bayesian lasso regression
-
Hans C. Model uncertainty and variable selection in Bayesian lasso regression. Statistics and Computing 2010; 20:221-229.
-
(2010)
Statistics and Computing
, vol.20
, pp. 221-229
-
-
Hans, C.1
-
43
-
-
0039713775
-
On scale mixtures of normal distributions
-
West M. On scale mixtures of normal distributions. Biometrika 1987; 74(3):646-648.
-
(1987)
Biometrika
, vol.74
, Issue.3
, pp. 646-648
-
-
West, M.1
-
44
-
-
84988112810
-
Inference for nonconjugate Bayesian models using the Gibbs sampler
-
Carlin BP, Polson NG. Inference for nonconjugate Bayesian models using the Gibbs sampler. The Canadian Journal of Statistics 1991; 19:399-405.
-
(1991)
The Canadian Journal of Statistics
, vol.19
, pp. 399-405
-
-
Carlin, B.P.1
Polson, N.G.2
-
45
-
-
71249130909
-
Bayesian lasso regression
-
Hans C. Bayesian lasso regression. Biometrika 2009; 96:835-845.
-
(2009)
Biometrika
, vol.96
, pp. 835-845
-
-
Hans, C.1
-
46
-
-
12844266177
-
Sparsity and smoothness via the fused lasso
-
Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K. Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society. Series B (Methodological) 2005; 67(1):91-108.
-
(2005)
Journal of the Royal Statistical Society. Series B (Methodological)
, vol.67
, Issue.1
, pp. 91-108
-
-
Tibshirani, R.1
Saunders, M.2
Rosset, S.3
Zhu, J.4
Knight, K.5
-
47
-
-
78049484065
-
Penalized regression, standard errors, and Bayesian lassos
-
Kyung M, Gilly J, Ghoshz M, Casella G. Penalized regression, standard errors, and Bayesian lassos. Bayesian Analysis 2010; 5(2):369-412.
-
(2010)
Bayesian Analysis
, vol.5
, Issue.2
, pp. 369-412
-
-
Kyung, M.1
Gilly, J.2
Ghoshz, M.3
Casella, G.4
-
48
-
-
79551657781
-
The Bayesian elastic net
-
Li Q, Lin N. The Bayesian elastic net. Bayesian Analysis 2010; 5(1):151-170.
-
(2010)
Bayesian Analysis
, vol.5
, Issue.1
, pp. 151-170
-
-
Li, Q.1
Lin, N.2
-
50
-
-
84867151416
-
Bayesian auxiliary variable models for binary and multinomial regression
-
Holmes CC, Held L. Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis 2006; 1:145-168.
-
(2006)
Bayesian Analysis
, vol.1
, pp. 145-168
-
-
Holmes, C.C.1
Held, L.2
-
51
-
-
4444239427
-
Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage
-
Sha N, Vannucci M, Tadesse MG, Brown PJ, Dragoni I, Davies N, Roberts TC, Contestabile A, Salmon M, Buckley C. Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage. Biometrics 2004; 60(3):812-819.
-
(2004)
Biometrics
, vol.60
, Issue.3
, pp. 812-819
-
-
Sha, N.1
Vannucci, M.2
Tadesse, M.G.3
Brown, P.J.4
Dragoni, I.5
Davies, N.6
Roberts, T.C.7
Contestabile, A.8
Salmon, M.9
Buckley, C.10
-
52
-
-
77950497193
-
Bayesian variable selection for disease classification using gene expression data
-
Yang A-J, Song X-Y. Bayesian variable selection for disease classification using gene expression data. Bioinformatics 2010; 26(2):215-222.
-
(2010)
Bioinformatics
, vol.26
, Issue.2
, pp. 215-222
-
-
Yang, A.-J.1
Song, X.-Y.2
-
53
-
-
4744364173
-
Cancer classification and prediction using logistic regression with Bayesian gene selection
-
Zhou X, Liu KY, Wong ST. Cancer classification and prediction using logistic regression with Bayesian gene selection. Journal of Biomedical Informatics 2004; 37(4):249-259.
-
(2004)
Journal of Biomedical Informatics
, vol.37
, Issue.4
, pp. 249-259
-
-
Zhou, X.1
Liu, K.Y.2
Wong, S.T.3
-
54
-
-
33748686773
-
Bayesian variable selection for the analysis of microarray data with censored outcomes
-
Sha N, Tadesse MG, Vannucci M. Bayesian variable selection for the analysis of microarray data with censored outcomes. Bioinformatics 2006; 22(18):2262-2268.
-
(2006)
Bioinformatics
, vol.22
, Issue.18
, pp. 2262-2268
-
-
Sha, N.1
Tadesse, M.G.2
Vannucci, M.3
-
55
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 2010; 33(1):1-22.
-
(2010)
Journal of Statistical Software
, vol.33
, Issue.1
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
56
-
-
4544388285
-
Gibbs variable selection using BUGS
-
Ntzoufras I. Gibbs variable selection using BUGS. Journal of Statistical Software 2002; 7(7):1-19.
-
(2002)
Journal of Statistical Software
, vol.7
, Issue.7
, pp. 1-19
-
-
Ntzoufras, I.1
-
57
-
-
84861201794
-
Bayesian methods for highly correlated exposure data
-
Nott DJ. Bayesian methods for highly correlated exposure data. Epidemiology 2008; 28(3):199-207.
-
(2008)
Epidemiology
, vol.28
, Issue.3
, pp. 199-207
-
-
Nott, D.J.1
-
58
-
-
40249119787
-
Predictive performance of Dirichlet process shrinkage methods in linear regression
-
Nott DJ. Predictive performance of Dirichlet process shrinkage methods in linear regression. Computational Statistics & Data Analysis 2008; 52(7):3658-3669.
-
(2008)
Computational Statistics & Data Analysis
, vol.52
, Issue.7
, pp. 3658-3669
-
-
Nott, D.J.1
-
59
-
-
79956309875
-
Spiked Dirichlet process prior for Bayesian multiple hypothesis testing in random effects models
-
Kim S, Dahly DB, Vannucci M. Spiked Dirichlet process prior for Bayesian multiple hypothesis testing in random effects models. Bayesian Analysis 2009; 4(4):707-732.
-
(2009)
Bayesian Analysis
, vol.4
, Issue.4
, pp. 707-732
-
-
Kim, S.1
Dahly, D.B.2
Vannucci, M.3
-
60
-
-
62549125109
-
High-dimensional sparse factor modelling: applications in gene expression genomics
-
Carvalho CM, Chang J, Lucas JE, Nevins JR, Wang Q, West M. High-dimensional sparse factor modelling: applications in gene expression genomics. Journal of the American Statistical Association 2008; 103(484):1438-1456.
-
(2008)
Journal of the American Statistical Association
, vol.103
, Issue.484
, pp. 1438-1456
-
-
Carvalho, C.M.1
Chang, J.2
Lucas, J.E.3
Nevins, J.R.4
Wang, Q.5
West, M.6
-
61
-
-
50449094780
-
On optimality of Bayesian testimation in the normal means problem
-
Abramovich F, Angelini C, De Canditiis D. On optimality of Bayesian testimation in the normal means problem. Annals of Statistics 2007; 35(5):2261-2286.
-
(2007)
Annals of Statistics
, vol.35
, Issue.5
, pp. 2261-2286
-
-
Abramovich, F.1
Angelini, C.2
De Canditiis, D.3
-
63
-
-
79958093963
-
An efficient stochastic search for Bayesian variable selection with high-dimensional correlated predictors
-
Kwon D, Landi MT, Vannucci M, Issaw HJ, Prieto D, Pfeiffer RM. An efficient stochastic search for Bayesian variable selection with high-dimensional correlated predictors. Computational Statistics and Data Analysis 2011; 55(10):2807-2818.
-
(2011)
Computational Statistics and Data Analysis
, vol.55
, Issue.10
, pp. 2807-2818
-
-
Kwon, D.1
Landi, M.T.2
Vannucci, M.3
Issaw, H.J.4
Prieto, D.5
Pfeiffer, R.M.6
-
64
-
-
44249109682
-
A general approach to simultaneous model fitting and variable elimination in response models for biological data with many more variables than observations
-
Kiiveri HT.A general approach to simultaneous model fitting and variable elimination in response models for biological data with many more variables than observations. BMC Bioinformatics 2008; 9(195):1-9.
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.195
, pp. 1-9
-
-
Kiiveri, H.T.1
-
65
-
-
34447573031
-
Identifying biomarkers from mass spectrometry data with ordinal outcome
-
Kwon D, Tadesse MG, Sha N, Pfeiffer RM, Vannucci M. Identifying biomarkers from mass spectrometry data with ordinal outcome. Cancer informatics 2007; 3(4):19-28.
-
(2007)
Cancer informatics
, vol.3
, Issue.4
, pp. 19-28
-
-
Kwon, D.1
Tadesse, M.G.2
Sha, N.3
Pfeiffer, R.M.4
Vannucci, M.5
|