메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 2774-2783

Visual recognition by learning from web data: A weakly supervised domain generalization approach

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; SAMPLING;

EID: 84959250997     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298894     Document Type: Conference Paper
Times cited : (78)

References (46)
  • 1
    • 33845666264 scopus 로고    scopus 로고
    • Newton-KKT interior-point methods for indefinite quadratic programming
    • P.-A. Absil and A. L. Tits. Newton-KKT interior-point methods for indefinite quadratic programming. Computational Optimization and Applications, 36(1):5-41, 2007
    • (2007) Computational Optimization and Applications , vol.36 , Issue.1 , pp. 5-41
    • Absil, P.-A.1    Tits, A.L.2
  • 5
    • 77949852900 scopus 로고    scopus 로고
    • Domain adaptation problems: A DASVM classification technique and a circular validation strategy
    • May
    • L. Bruzzone and M. Marconcini. Domain adaptation problems: A DASVM classification technique and a circular validation strategy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32:770-787, May 2010
    • (2010) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.32 , pp. 770-787
    • Bruzzone, L.1    Marconcini, M.2
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273-297, 1995
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. The Journal of Machine Learning Research, 2:265-292, 2002
    • (2002) The Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 15
    • 84862192949 scopus 로고    scopus 로고
    • Domain adaptation from multiple sources: A domain-dependent regularization approach
    • Mar.
    • L. Duan, D. Xu, and I. W. Tsang. Domain adaptation from multiple sources: A domain-dependent regularization approach. IEEE Trans. Neural Networks and Learning Systems, 23(3):504-518, Mar. 2012
    • (2012) IEEE Trans. Neural Networks and Learning Systems , vol.23 , Issue.3 , pp. 504-518
    • Duan, L.1    Xu, D.2    Tsang, I.W.3
  • 17
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for training support vector machines. The Journal of Machine Learning Research, 6:1889-1918, 2005
    • (2005) The Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 19
    • 70450141068 scopus 로고    scopus 로고
    • Technical report, Max Planck Institute for Biological Cybernetics
    • P. V. Gehler and S. Nowozin. Infinite kernel learning. Technical report, Max Planck Institute for Biological Cybernetics, 2008
    • (2008) Infinite Kernel Learning
    • Gehler, P.V.1    Nowozin, S.2
  • 25
    • 84864031047 scopus 로고    scopus 로고
    • Correcting sample selection bias by unlabeled data
    • Cancouver and Whistler, Canada, Dec.
    • J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Scholkopf. Correcting sample selection bias by unlabeled data. In NIPS, pages 601-608, Cancouver and Whistler, Canada, Dec. 2006
    • (2006) NIPS , pp. 601-608
    • Huang, J.1    Smola, A.2    Gretton, A.3    Borgwardt, K.4    Scholkopf, B.5
  • 32
    • 84901836467 scopus 로고    scopus 로고
    • Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation
    • W. Li, L. Duan, D. Xu, and I. W. Tsang. Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(6):1134-1148, 2014
    • (2014) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.36 , Issue.6 , pp. 1134-1148
    • Li, W.1    Duan, L.2    Xu, D.3    Tsang, I.W.4
  • 33
    • 84906486177 scopus 로고    scopus 로고
    • Exploiting privileged information from web data for image categorization
    • Zurich, Switzerland, Sep.
    • W. Li, L. Niu, and D. Xu. Exploiting privileged information from web data for image categorization. In Proceedings of the 13th European Conference on Computer Vision, pages 437-452. Zurich, Switzerland, Sep. 2014
    • (2014) Proceedings of the 13th European Conference on Computer Vision , pp. 437-452
    • Li, W.1    Niu, L.2    Xu, D.3
  • 40
    • 68149165759 scopus 로고    scopus 로고
    • A new learning paradigm: Learning using privileged information
    • V. Vapnik and A. Vashist. A new learning paradigm: Learning using privileged information. Neural Networks, 22(5-6):544-557, 2009
    • (2009) Neural Networks , vol.22 , Issue.5-6 , pp. 544-557
    • Vapnik, V.1    Vashist, A.2
  • 43
    • 84906489727 scopus 로고    scopus 로고
    • Exploiting low-rank structure from latent domains for domain generalization
    • Zurich, Switzerland, Sep.
    • Z. Xu, W. Li, L. Niu, and D. Xu. Exploiting low-rank structure from latent domains for domain generalization. In Proceedings of the 13th European Conference on Computer Vision, pages 628-643. Zurich, Switzerland, Sep. 2014
    • (2014) Proceedings of the 13th European Conference on Computer Vision , pp. 628-643
    • Xu, Z.1    Li, W.2    Niu, L.3    Xu, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.