메뉴 건너뛰기




Volumn 1859, Issue 3, 2016, Pages 486-495

The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics

Author keywords

Chromatin dynamics; Epigenetic; H1 subtypes; Linker histone H1

Indexed keywords

HISTONE H1; CHROMATIN; HISTONE;

EID: 84959157904     PISSN: 18749399     EISSN: 18764320     Source Type: Journal    
DOI: 10.1016/j.bbagrm.2015.09.003     Document Type: Review
Times cited : (96)

References (144)
  • 1
    • 84908311698 scopus 로고    scopus 로고
    • Identification of novel post-translational modifications in linker histones from chicken erythrocytes
    • Sarg B., et al. Identification of novel post-translational modifications in linker histones from chicken erythrocytes. J. Proteome 2015, 113:162-177.
    • (2015) J. Proteome , vol.113 , pp. 162-177
    • Sarg, B.1
  • 2
    • 33846488609 scopus 로고    scopus 로고
    • Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue
    • Wisniewski J.R., et al. Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue. Mol. Cell. Proteomics 2007, 6(1):72-87.
    • (2007) Mol. Cell. Proteomics , vol.6 , Issue.1 , pp. 72-87
    • Wisniewski, J.R.1
  • 3
    • 49849084013 scopus 로고    scopus 로고
    • Global changes in and characterization of specific sites of phosphorylation in mouse and human histone H1 isoforms upon CDK inhibitor treatment using mass spectrometry
    • Deterding L.J., et al. Global changes in and characterization of specific sites of phosphorylation in mouse and human histone H1 isoforms upon CDK inhibitor treatment using mass spectrometry. J. Proteome Res. 2008, 7(6):2368-2379.
    • (2008) J. Proteome Res. , vol.7 , Issue.6 , pp. 2368-2379
    • Deterding, L.J.1
  • 4
    • 44649186259 scopus 로고    scopus 로고
    • The histone H1 family: specific members, specific functions?
    • Izzo A., Kamieniarz K., Schneider R. The histone H1 family: specific members, specific functions?. Biol. Chem. 2008, 389(4):333-343.
    • (2008) Biol. Chem. , vol.389 , Issue.4 , pp. 333-343
    • Izzo, A.1    Kamieniarz, K.2    Schneider, R.3
  • 5
    • 0034881774 scopus 로고    scopus 로고
    • A compendium of the histone H1 family of somatic subtypes: an elusive cast of characters and their characteristics
    • Parseghian M.H., Hamkalo B.A. A compendium of the histone H1 family of somatic subtypes: an elusive cast of characters and their characteristics. Biochem. Cell Biol. 2001, 79(3):289-304.
    • (2001) Biochem. Cell Biol. , vol.79 , Issue.3 , pp. 289-304
    • Parseghian, M.H.1    Hamkalo, B.A.2
  • 6
    • 68049095094 scopus 로고    scopus 로고
    • H1 subtype expression during cell proliferation and growth arrest
    • Happel N., et al. H1 subtype expression during cell proliferation and growth arrest. Cell Cycle 2009, 8(14):2226-2232.
    • (2009) Cell Cycle , vol.8 , Issue.14 , pp. 2226-2232
    • Happel, N.1
  • 7
    • 0028696279 scopus 로고
    • Histone H1 zero: a major player in cell differentiation?
    • Zlatanova J., Doenecke D. Histone H1 zero: a major player in cell differentiation?. FASEB J. 1994, 8(15):1260-1268.
    • (1994) FASEB J. , vol.8 , Issue.15 , pp. 1260-1268
    • Zlatanova, J.1    Doenecke, D.2
  • 8
    • 0019888694 scopus 로고
    • Histones H1 and H5: one or two molecules per nucleosome?
    • Bates D.L., Thomas J.O. Histones H1 and H5: one or two molecules per nucleosome?. Nucleic Acids Res. 1981, 9(22):5883-5894.
    • (1981) Nucleic Acids Res. , vol.9 , Issue.22 , pp. 5883-5894
    • Bates, D.L.1    Thomas, J.O.2
  • 9
    • 0035173870 scopus 로고    scopus 로고
    • Origin of H1 linker histones
    • Kasinsky H.E., et al. Origin of H1 linker histones. FASEB J. 2001, 15(1):34-42.
    • (2001) FASEB J. , vol.15 , Issue.1 , pp. 34-42
    • Kasinsky, H.E.1
  • 10
    • 1642489172 scopus 로고
    • An intervening sequence in an unusual histone H1 gene of Tetrahymena thermophila
    • Wu M., et al. An intervening sequence in an unusual histone H1 gene of Tetrahymena thermophila. Proc. Natl. Acad. Sci. U. S. A. 1986, 83(22):8674-8678.
    • (1986) Proc. Natl. Acad. Sci. U. S. A. , vol.83 , Issue.22 , pp. 8674-8678
    • Wu, M.1
  • 11
    • 0030219940 scopus 로고    scopus 로고
    • Histone H1 in Saccharomyces cerevisiae: a double mystery solved?
    • Landsman D. Histone H1 in Saccharomyces cerevisiae: a double mystery solved?. Trends Biochem. Sci. 1996, 21(8):287-288.
    • (1996) Trends Biochem. Sci. , vol.21 , Issue.8 , pp. 287-288
    • Landsman, D.1
  • 12
    • 0031016023 scopus 로고    scopus 로고
    • Histone H1 in Saccharomyces cerevisiae
    • Ushinsky S.C., et al. Histone H1 in Saccharomyces cerevisiae. Yeast 1997, 13(2):151-161.
    • (1997) Yeast , vol.13 , Issue.2 , pp. 151-161
    • Ushinsky, S.C.1
  • 13
    • 0032571258 scopus 로고    scopus 로고
    • The biochemical and phenotypic characterization of Hho1p, the putative linker histone H1 of Saccharomyces cerevisiae
    • Patterton H.G., et al. The biochemical and phenotypic characterization of Hho1p, the putative linker histone H1 of Saccharomyces cerevisiae. J. Biol. Chem. 1998, 273(13):7268-7276.
    • (1998) J. Biol. Chem. , vol.273 , Issue.13 , pp. 7268-7276
    • Patterton, H.G.1
  • 14
    • 0030576509 scopus 로고    scopus 로고
    • Linker histone H1 regulates specific gene expression but not global transcription in vivo
    • Shen X., Gorovsky M.A. Linker histone H1 regulates specific gene expression but not global transcription in vivo. Cell 1996, 86(3):475-483.
    • (1996) Cell , vol.86 , Issue.3 , pp. 475-483
    • Shen, X.1    Gorovsky, M.A.2
  • 15
    • 15544369819 scopus 로고    scopus 로고
    • Suppression of histone H1 genes in Arabidopsis results in heritable developmental defects and stochastic changes in DNA methylation
    • Wierzbicki A.T., Jerzmanowski A. Suppression of histone H1 genes in Arabidopsis results in heritable developmental defects and stochastic changes in DNA methylation. Genetics 2005, 169(2):997-1008.
    • (2005) Genetics , vol.169 , Issue.2 , pp. 997-1008
    • Wierzbicki, A.T.1    Jerzmanowski, A.2
  • 16
    • 0035033040 scopus 로고    scopus 로고
    • A single histone H1 isoform (H1.1) is essential for chromatin silencing and germline development in Caenorhabditis elegans
    • Jedrusik M.A., Schulze E. A single histone H1 isoform (H1.1) is essential for chromatin silencing and germline development in Caenorhabditis elegans. Development 2001, 128(7):1069-1080.
    • (2001) Development , vol.128 , Issue.7 , pp. 1069-1080
    • Jedrusik, M.A.1    Schulze, E.2
  • 17
    • 0033986861 scopus 로고    scopus 로고
    • Histone H1 is dispensable for methylation-associated gene silencing in Ascobolus immersus and essential for long life span
    • Barra J.L., et al. Histone H1 is dispensable for methylation-associated gene silencing in Ascobolus immersus and essential for long life span. Mol. Cell. Biol. 2000, 20(1):61-69.
    • (2000) Mol. Cell. Biol. , vol.20 , Issue.1 , pp. 61-69
    • Barra, J.L.1
  • 18
    • 29244449333 scopus 로고    scopus 로고
    • Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation
    • Fan Y., et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 2005, 123(7):1199-1212.
    • (2005) Cell , vol.123 , Issue.7 , pp. 1199-1212
    • Fan, Y.1
  • 19
    • 61449102557 scopus 로고    scopus 로고
    • Linker histone H1 is essential for Drosophila development, the establishment of pericentric heterochromatin, and a normal polytene chromosome structure
    • Lu X., et al. Linker histone H1 is essential for Drosophila development, the establishment of pericentric heterochromatin, and a normal polytene chromosome structure. Genes Dev. 2009, 23(4):452-465.
    • (2009) Genes Dev. , vol.23 , Issue.4 , pp. 452-465
    • Lu, X.1
  • 20
    • 0021305320 scopus 로고
    • A minireview of microheterogeneity in H1 histone and its possible significance
    • Cole R.D. A minireview of microheterogeneity in H1 histone and its possible significance. Anal. Biochem. 1984, 136(1):24-30.
    • (1984) Anal. Biochem. , vol.136 , Issue.1 , pp. 24-30
    • Cole, R.D.1
  • 21
    • 0021724832 scopus 로고
    • Control of RNA polymerase binding to chromatin by variations in linker histone composition
    • Hannon R., et al. Control of RNA polymerase binding to chromatin by variations in linker histone composition. J. Mol. Biol. 1984, 180(1):131-149.
    • (1984) J. Mol. Biol. , vol.180 , Issue.1 , pp. 131-149
    • Hannon, R.1
  • 22
    • 0022355640 scopus 로고
    • Differences in the condensation of chromatin by individual subfractions of histone H1: implications for the role of H1(0) in the structural organization of chromatin
    • Marion C., et al. Differences in the condensation of chromatin by individual subfractions of histone H1: implications for the role of H1(0) in the structural organization of chromatin. Biochemistry 1985, 24(23):6328-6335.
    • (1985) Biochemistry , vol.24 , Issue.23 , pp. 6328-6335
    • Marion, C.1
  • 23
    • 0034649663 scopus 로고    scopus 로고
    • Dynamic binding of histone H1 to chromatin in living cells
    • Misteli T., et al. Dynamic binding of histone H1 to chromatin in living cells. Nature 2000, 408(6814):877-881.
    • (2000) Nature , vol.408 , Issue.6814 , pp. 877-881
    • Misteli, T.1
  • 24
    • 0033850576 scopus 로고    scopus 로고
    • The distribution of somatic H1 subtypes is non-random on active vs. inactive chromatin: distribution in human fetal fibroblasts
    • Parseghian M.H., et al. The distribution of somatic H1 subtypes is non-random on active vs. inactive chromatin: distribution in human fetal fibroblasts. Chromosom. Res. 2000, 8(5):405-424.
    • (2000) Chromosom. Res. , vol.8 , Issue.5 , pp. 405-424
    • Parseghian, M.H.1
  • 25
    • 84898993377 scopus 로고    scopus 로고
    • Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2
    • Millan-Arino L., et al. Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2. Nucleic Acids Res. 2014, 42(7):4474-4493.
    • (2014) Nucleic Acids Res. , vol.42 , Issue.7 , pp. 4474-4493
    • Millan-Arino, L.1
  • 26
    • 84879798361 scopus 로고    scopus 로고
    • The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells
    • Izzo A., et al. The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells. Cell Rep. 2013, 3(6):2142-2154.
    • (2013) Cell Rep. , vol.3 , Issue.6 , pp. 2142-2154
    • Izzo, A.1
  • 27
    • 84925264036 scopus 로고    scopus 로고
    • Genome distribution of replication-independent histone H1 variants shows H1.0 associated with nucleolar domains and H1X associated with RNA polymerase II-enriched regions
    • Mayor R., et al. Genome distribution of replication-independent histone H1 variants shows H1.0 associated with nucleolar domains and H1X associated with RNA polymerase II-enriched regions. J. Biol. Chem. 2015, 290(12):7474-7491.
    • (2015) J. Biol. Chem. , vol.290 , Issue.12 , pp. 7474-7491
    • Mayor, R.1
  • 28
    • 0032488030 scopus 로고    scopus 로고
    • Chromatin structure: linking structure to function with histone H1
    • Widom J. Chromatin structure: linking structure to function with histone H1. Curr. Biol. 1998, 8(22):R788-R791.
    • (1998) Curr. Biol. , vol.8 , Issue.22 , pp. R788-R791
    • Widom, J.1
  • 29
    • 0024468871 scopus 로고
    • Homogeneous reconstituted oligonucleosomes, evidence for salt-dependent folding in the absence of histone H1
    • Hansen J.C., et al. Homogeneous reconstituted oligonucleosomes, evidence for salt-dependent folding in the absence of histone H1. Biochemistry 1989, 28(23):9129-9136.
    • (1989) Biochemistry , vol.28 , Issue.23 , pp. 9129-9136
    • Hansen, J.C.1
  • 30
    • 0026570507 scopus 로고
    • The transcriptionally-active MMTV promoter is depleted of histone H1
    • Bresnick E.H., et al. The transcriptionally-active MMTV promoter is depleted of histone H1. Nucleic Acids Res. 1992, 20(2):273-278.
    • (1992) Nucleic Acids Res. , vol.20 , Issue.2 , pp. 273-278
    • Bresnick, E.H.1
  • 31
    • 0035958006 scopus 로고    scopus 로고
    • Decreased expression of specific genes in yeast cells lacking histone H1
    • Hellauer K., Sirard E., Turcotte B. Decreased expression of specific genes in yeast cells lacking histone H1. J. Biol. Chem. 2001, 276(17):13587-13592.
    • (2001) J. Biol. Chem. , vol.276 , Issue.17 , pp. 13587-13592
    • Hellauer, K.1    Sirard, E.2    Turcotte, B.3
  • 32
    • 0031261489 scopus 로고    scopus 로고
    • A single copy of linker H1 genes is enough for proliferation of the DT40 chicken B cell line, and linker H1 variants participate in regulation of gene expression
    • Takami Y., Nakayama T. A single copy of linker H1 genes is enough for proliferation of the DT40 chicken B cell line, and linker H1 variants participate in regulation of gene expression. Genes Cells 1997, 2(11):711-723.
    • (1997) Genes Cells , vol.2 , Issue.11 , pp. 711-723
    • Takami, Y.1    Nakayama, T.2
  • 33
    • 55449090888 scopus 로고    scopus 로고
    • Depletion of human histone H1 variants uncovers specific roles in gene expression and cell growth
    • Sancho M., et al. Depletion of human histone H1 variants uncovers specific roles in gene expression and cell growth. PLoS Genet. 2008, 4(10):e1000227.
    • (2008) PLoS Genet. , vol.4 , Issue.10 , pp. e1000227
    • Sancho, M.1
  • 34
    • 0034644473 scopus 로고    scopus 로고
    • Signaling to chromatin through histone modifications
    • Cheung P., Allis C.D., Sassone-Corsi P. Signaling to chromatin through histone modifications. Cell 2000, 103(2):263-271.
    • (2000) Cell , vol.103 , Issue.2 , pp. 263-271
    • Cheung, P.1    Allis, C.D.2    Sassone-Corsi, P.3
  • 35
    • 84859830821 scopus 로고    scopus 로고
    • A dual role of linker histone H1.4 Lys 34 acetylation in transcriptional activation
    • Kamieniarz K., et al. A dual role of linker histone H1.4 Lys 34 acetylation in transcriptional activation. Genes Dev. 2012, 26(8):797-802.
    • (2012) Genes Dev. , vol.26 , Issue.8 , pp. 797-802
    • Kamieniarz, K.1
  • 36
    • 0026545414 scopus 로고
    • Chromatin condensation: does histone H1 dephosphorylation play a role?
    • Roth S.Y., Allis C.D. Chromatin condensation: does histone H1 dephosphorylation play a role?. Trends Biochem. Sci. 1992, 17(3):93-98.
    • (1992) Trends Biochem. Sci. , vol.17 , Issue.3 , pp. 93-98
    • Roth, S.Y.1    Allis, C.D.2
  • 37
    • 42249106676 scopus 로고    scopus 로고
    • Histone H1 of Trypanosoma cruzi is concentrated in the nucleolus region and disperses upon phosphorylation during progression to mitosis
    • Gutiyama L.M., da Cunha J.P., Schenkman S. Histone H1 of Trypanosoma cruzi is concentrated in the nucleolus region and disperses upon phosphorylation during progression to mitosis. Eukaryot. Cell 2008, 7(4):560-568.
    • (2008) Eukaryot. Cell , vol.7 , Issue.4 , pp. 560-568
    • Gutiyama, L.M.1    da Cunha, J.P.2    Schenkman, S.3
  • 38
    • 0030068951 scopus 로고    scopus 로고
    • In vivo phosphorylation of histone H1 variants during the cell cycle
    • Talasz H., et al. In vivo phosphorylation of histone H1 variants during the cell cycle. Biochemistry 1996, 35(6):1761-1767.
    • (1996) Biochemistry , vol.35 , Issue.6 , pp. 1761-1767
    • Talasz, H.1
  • 39
    • 33645304620 scopus 로고    scopus 로고
    • About histone H1 phosphorylation during mitosis
    • Baatout S., Derradji H. About histone H1 phosphorylation during mitosis. Cell Biochem. Funct. 2006, 24(2):93-94.
    • (2006) Cell Biochem. Funct. , vol.24 , Issue.2 , pp. 93-94
    • Baatout, S.1    Derradji, H.2
  • 40
    • 0026528048 scopus 로고
    • M-phase-specific histone H1 kinase in fish oocytes. Purification, components and biochemical properties
    • Yamashita M., et al. M-phase-specific histone H1 kinase in fish oocytes. Purification, components and biochemical properties. Eur. J. Biochem. 1992, 205(2):537-543.
    • (1992) Eur. J. Biochem. , vol.205 , Issue.2 , pp. 537-543
    • Yamashita, M.1
  • 41
    • 0036154994 scopus 로고    scopus 로고
    • Histone H1 is phosphorylated in non-replicating and infective forms of Trypanosoma cruzi
    • Marques Porto R., et al. Histone H1 is phosphorylated in non-replicating and infective forms of Trypanosoma cruzi. Mol. Biochem. Parasitol. 2002, 119(2):265-271.
    • (2002) Mol. Biochem. Parasitol. , vol.119 , Issue.2 , pp. 265-271
    • Marques Porto, R.1
  • 42
    • 0028820336 scopus 로고
    • Characterization of the mitotic specific phosphorylation site of histone H1. Absence of a consensus sequence for the p34cdc2/cyclin B kinase
    • Gurley L.R., Valdez J.G., Buchanan J.S. Characterization of the mitotic specific phosphorylation site of histone H1. Absence of a consensus sequence for the p34cdc2/cyclin B kinase. J. Biol. Chem. 1995, 270(46):27653-27660.
    • (1995) J. Biol. Chem. , vol.270 , Issue.46 , pp. 27653-27660
    • Gurley, L.R.1    Valdez, J.G.2    Buchanan, J.S.3
  • 43
    • 79961124094 scopus 로고    scopus 로고
    • Histone H1 interphase phosphorylation becomes largely established in G1 or early S phase and differs in G1 between T-lymphoblastoid cells and normal T cells
    • Green A., et al. Histone H1 interphase phosphorylation becomes largely established in G1 or early S phase and differs in G1 between T-lymphoblastoid cells and normal T cells. Epigenetics Chromatin 2011, 4:15.
    • (2011) Epigenetics Chromatin , vol.4 , pp. 15
    • Green, A.1
  • 44
    • 33646569673 scopus 로고    scopus 로고
    • Histone H1 phosphorylation occurs site-specifically during interphase and mitosis: identification of a novel phosphorylation site on histone H1
    • Sarg B., et al. Histone H1 phosphorylation occurs site-specifically during interphase and mitosis: identification of a novel phosphorylation site on histone H1. J. Biol. Chem. 2006, 281(10):6573-6580.
    • (2006) J. Biol. Chem. , vol.281 , Issue.10 , pp. 6573-6580
    • Sarg, B.1
  • 45
    • 0029909105 scopus 로고    scopus 로고
    • Increased histone H1 phosphorylation and relaxed chromatin structure in Rb-deficient fibroblasts
    • Herrera R.E., Chen F., Weinberg R.A. Increased histone H1 phosphorylation and relaxed chromatin structure in Rb-deficient fibroblasts. Proc. Natl. Acad. Sci. U. S. A. 1996, 93(21):11510-11515.
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , Issue.21 , pp. 11510-11515
    • Herrera, R.E.1    Chen, F.2    Weinberg, R.A.3
  • 46
    • 0029953320 scopus 로고    scopus 로고
    • Evidence that the endogenous histone H1 phosphatase in HeLa mitotic chromosomes is protein phosphatase 1, not protein phosphatase 2A
    • Paulson J.R., Patzlaff J.S., Vallis A.J. Evidence that the endogenous histone H1 phosphatase in HeLa mitotic chromosomes is protein phosphatase 1, not protein phosphatase 2A. J. Cell Sci. 1996, 109(Pt 6):1437-1447.
    • (1996) J. Cell Sci. , vol.109 , pp. 1437-1447
    • Paulson, J.R.1    Patzlaff, J.S.2    Vallis, A.J.3
  • 47
    • 0030666314 scopus 로고    scopus 로고
    • Four distinct cyclin-dependent kinases phosphorylate histone H1 at all of its growth-related phosphorylation sites
    • Swank R.A., et al. Four distinct cyclin-dependent kinases phosphorylate histone H1 at all of its growth-related phosphorylation sites. Biochemistry 1997, 36(45):13761-13768.
    • (1997) Biochemistry , vol.36 , Issue.45 , pp. 13761-13768
    • Swank, R.A.1
  • 48
    • 79956226872 scopus 로고    scopus 로고
    • Isoform-specific phosphorylation of human linker histone H1.4 in mitosis by the kinase aurora B
    • Hergeth S.P., et al. Isoform-specific phosphorylation of human linker histone H1.4 in mitosis by the kinase aurora B. J. Cell Sci. 2011, 124(Pt 10):1623-1628.
    • (2011) J. Cell Sci. , vol.124 , pp. 1623-1628
    • Hergeth, S.P.1
  • 49
    • 59149103350 scopus 로고    scopus 로고
    • M phase-specific phosphorylation of histone H1.5 at threonine 10 by GSK-3
    • Happel N., et al. M phase-specific phosphorylation of histone H1.5 at threonine 10 by GSK-3. J. Mol. Biol. 2009, 386(2):339-350.
    • (2009) J. Mol. Biol. , vol.386 , Issue.2 , pp. 339-350
    • Happel, N.1
  • 50
    • 80053918242 scopus 로고    scopus 로고
    • Protein kinase A-mediated serine 35 phosphorylation dissociates histone H1.4 from mitotic chromosome
    • Chu C.S., et al. Protein kinase A-mediated serine 35 phosphorylation dissociates histone H1.4 from mitotic chromosome. J. Biol. Chem. 2011, 286(41):35843-35851.
    • (2011) J. Biol. Chem. , vol.286 , Issue.41 , pp. 35843-35851
    • Chu, C.S.1
  • 51
    • 0031021531 scopus 로고    scopus 로고
    • Phosphorylation of linker histones by a protein kinase A-like activity in mitotic nuclei
    • Sweet M.T., et al. Phosphorylation of linker histones by a protein kinase A-like activity in mitotic nuclei. J. Biol. Chem. 1997, 272(2):916-923.
    • (1997) J. Biol. Chem. , vol.272 , Issue.2 , pp. 916-923
    • Sweet, M.T.1
  • 52
    • 0037028251 scopus 로고    scopus 로고
    • Histone H1(S)-3 phosphorylation in Ha-ras oncogene-transformed mouse fibroblasts
    • Chadee D.N., Peltier C.P., Davie J.R. Histone H1(S)-3 phosphorylation in Ha-ras oncogene-transformed mouse fibroblasts. Oncogene 2002, 21(55):8397-8403.
    • (2002) Oncogene , vol.21 , Issue.55 , pp. 8397-8403
    • Chadee, D.N.1    Peltier, C.P.2    Davie, J.R.3
  • 53
    • 84886882045 scopus 로고    scopus 로고
    • Pin1 promotes histone H1 dephosphorylation and stabilizes its binding to chromatin
    • Raghuram N., et al. Pin1 promotes histone H1 dephosphorylation and stabilizes its binding to chromatin. J. Cell Biol. 2013, 203(1):57-71.
    • (2013) J. Cell Biol. , vol.203 , Issue.1 , pp. 57-71
    • Raghuram, N.1
  • 54
    • 77951866420 scopus 로고    scopus 로고
    • Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II
    • Zheng Y., et al. Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II. J. Cell Biol. 2010, 189(3):407-415.
    • (2010) J. Cell Biol. , vol.189 , Issue.3 , pp. 407-415
    • Zheng, Y.1
  • 55
    • 84902656034 scopus 로고    scopus 로고
    • Dynamics and dispensability of variant-specific histone H1 Lys-26/Ser-27 and Thr-165 post-translational modifications
    • Terme J.M., et al. Dynamics and dispensability of variant-specific histone H1 Lys-26/Ser-27 and Thr-165 post-translational modifications. FEBS Lett. 2014, 588(14):2353-2362.
    • (2014) FEBS Lett. , vol.588 , Issue.14 , pp. 2353-2362
    • Terme, J.M.1
  • 56
    • 70450221702 scopus 로고    scopus 로고
    • Site-specifically phosphorylated forms of H1.5 and H1.2 localized at distinct regions of the nucleus are related to different processes during the cell cycle
    • Talasz H., Sarg B., Lindner H.H. Site-specifically phosphorylated forms of H1.5 and H1.2 localized at distinct regions of the nucleus are related to different processes during the cell cycle. Chromosoma 2009, 118(6):693-709.
    • (2009) Chromosoma , vol.118 , Issue.6 , pp. 693-709
    • Talasz, H.1    Sarg, B.2    Lindner, H.H.3
  • 57
    • 27844519267 scopus 로고    scopus 로고
    • HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding
    • Daujat S., et al. HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J. Biol. Chem. 2005, 280(45):38090-38095.
    • (2005) J. Biol. Chem. , vol.280 , Issue.45 , pp. 38090-38095
    • Daujat, S.1
  • 58
    • 84892464356 scopus 로고    scopus 로고
    • Epigenetic marking of sperm by post-translational modification of histones and protamines
    • Brunner A.M., Nanni P., Mansuy I.M. Epigenetic marking of sperm by post-translational modification of histones and protamines. Epigenetics Chromatin 2014, 7(1):2.
    • (2014) Epigenetics Chromatin , vol.7 , Issue.1 , pp. 2
    • Brunner, A.M.1    Nanni, P.2    Mansuy, I.M.3
  • 59
    • 33749264993 scopus 로고    scopus 로고
    • Comprehensive phosphoprotein analysis of linker histone H1 from Tetrahymena thermophila
    • Garcia B.A., et al. Comprehensive phosphoprotein analysis of linker histone H1 from Tetrahymena thermophila. Mol. Cell. Proteomics 2006, 5(9):1593-1609.
    • (2006) Mol. Cell. Proteomics , vol.5 , Issue.9 , pp. 1593-1609
    • Garcia, B.A.1
  • 60
    • 45249112848 scopus 로고    scopus 로고
    • Fine mapping of posttranslational modifications of the linker histone H1 from Drosophila melanogaster
    • Villar-Garea A., Imhof A. Fine mapping of posttranslational modifications of the linker histone H1 from Drosophila melanogaster. PLoS One 2008, 3(2):e1553.
    • (2008) PLoS One , vol.3 , Issue.2 , pp. e1553
    • Villar-Garea, A.1    Imhof, A.2
  • 61
    • 84862682035 scopus 로고    scopus 로고
    • Combined bottom-up and top-down mass spectrometry analyses of the pattern of post-translational modifications of Drosophila melanogaster linker histone H1
    • Bonet-Costa C., et al. Combined bottom-up and top-down mass spectrometry analyses of the pattern of post-translational modifications of Drosophila melanogaster linker histone H1. J. Proteome 2012, 75(13):4124-4138.
    • (2012) J. Proteome , vol.75 , Issue.13 , pp. 4124-4138
    • Bonet-Costa, C.1
  • 62
    • 0035965213 scopus 로고    scopus 로고
    • Hormone-mediated dephosphorylation of specific histone H1 isoforms
    • Banks G.C., et al. Hormone-mediated dephosphorylation of specific histone H1 isoforms. J. Biol. Chem. 2001, 276(39):36467-36473.
    • (2001) J. Biol. Chem. , vol.276 , Issue.39 , pp. 36467-36473
    • Banks, G.C.1
  • 63
    • 0034730523 scopus 로고    scopus 로고
    • Rapid dephosphorylation of H1 histones after apoptosis induction
    • Kratzmeier M., et al. Rapid dephosphorylation of H1 histones after apoptosis induction. J. Biol. Chem. 2000, 275(39):30478-30486.
    • (2000) J. Biol. Chem. , vol.275 , Issue.39 , pp. 30478-30486
    • Kratzmeier, M.1
  • 64
    • 26444570961 scopus 로고    scopus 로고
    • Topoisomerase inhibitor induced dephosphorylation of H1 and H3 histones as a consequence of cell cycle arrest
    • Happel N., et al. Topoisomerase inhibitor induced dephosphorylation of H1 and H3 histones as a consequence of cell cycle arrest. J. Cell. Biochem. 2005, 95(6):1235-1247.
    • (2005) J. Cell. Biochem. , vol.95 , Issue.6 , pp. 1235-1247
    • Happel, N.1
  • 65
    • 33846563531 scopus 로고    scopus 로고
    • Apoptotic DNA fragmentation is not related to the phosphorylation state of histone H1
    • Goebel W., et al. Apoptotic DNA fragmentation is not related to the phosphorylation state of histone H1. Biol. Chem. 2007, 388(2):197-206.
    • (2007) Biol. Chem. , vol.388 , Issue.2 , pp. 197-206
    • Goebel, W.1
  • 66
    • 47249118448 scopus 로고    scopus 로고
    • Histone H1 dephosphorylation is not a general feature in early apoptosis
    • Green A., et al. Histone H1 dephosphorylation is not a general feature in early apoptosis. Biochemistry 2008, 47(28):7539-7547.
    • (2008) Biochemistry , vol.47 , Issue.28 , pp. 7539-7547
    • Green, A.1
  • 67
    • 0026441880 scopus 로고
    • Reversible histone modifications and the chromosome cell cycle
    • Bradbury E.M. Reversible histone modifications and the chromosome cell cycle. BioEssays 1992, 14(1):9-16.
    • (1992) BioEssays , vol.14 , Issue.1 , pp. 9-16
    • Bradbury, E.M.1
  • 68
    • 0028284541 scopus 로고
    • Inhibition of histone phosphorylation by staurosporine leads to chromosome decondensation
    • Th'ng J.P., et al. Inhibition of histone phosphorylation by staurosporine leads to chromosome decondensation. J. Biol. Chem. 1994, 269(13):9568-9573.
    • (1994) J. Biol. Chem. , vol.269 , Issue.13 , pp. 9568-9573
    • Th'ng, J.P.1
  • 69
    • 0016592054 scopus 로고
    • Sequential phsophorylation of histone subfractions in the Chinese hamster cell cycle
    • Gurley L.R., Walters R.A., Tobey R.A. Sequential phsophorylation of histone subfractions in the Chinese hamster cell cycle. J. Biol. Chem. 1975, 250(10):3936-3944.
    • (1975) J. Biol. Chem. , vol.250 , Issue.10 , pp. 3936-3944
    • Gurley, L.R.1    Walters, R.A.2    Tobey, R.A.3
  • 70
    • 0029155905 scopus 로고
    • Phosphorylated and dephosphorylated linker histone H1 reside in distinct chromatin domains in Tetrahymena macronuclei
    • Lu M.J., et al. Phosphorylated and dephosphorylated linker histone H1 reside in distinct chromatin domains in Tetrahymena macronuclei. Mol. Biol. Cell 1995, 6(8):1077-1087.
    • (1995) Mol. Biol. Cell , vol.6 , Issue.8 , pp. 1077-1087
    • Lu, M.J.1
  • 71
    • 0028931408 scopus 로고
    • Chromosome condensation induced by fostriecin does not require p34cdc2 kinase activity and histone H1 hyperphosphorylation, but is associated with enhanced histone H2A and H3 phosphorylation
    • Guo X.W., et al. Chromosome condensation induced by fostriecin does not require p34cdc2 kinase activity and histone H1 hyperphosphorylation, but is associated with enhanced histone H2A and H3 phosphorylation. EMBO J. 1995, 14(5):976-985.
    • (1995) EMBO J. , vol.14 , Issue.5 , pp. 976-985
    • Guo, X.W.1
  • 72
    • 23444445850 scopus 로고
    • Chromosome condensation in Xenopus mitotic extracts without histone H1
    • Ohsumi K., Katagiri C., Kishimoto T. Chromosome condensation in Xenopus mitotic extracts without histone H1. Science 1993, 262(5142):2033-2035.
    • (1993) Science , vol.262 , Issue.5142 , pp. 2033-2035
    • Ohsumi, K.1    Katagiri, C.2    Kishimoto, T.3
  • 73
    • 0033213394 scopus 로고    scopus 로고
    • Phosphorylation of linker histone H1 regulates gene expression in vivo by mimicking H1 removal
    • Dou Y., et al. Phosphorylation of linker histone H1 regulates gene expression in vivo by mimicking H1 removal. Mol. Cell 1999, 4(4):641-647.
    • (1999) Mol. Cell , vol.4 , Issue.4 , pp. 641-647
    • Dou, Y.1
  • 74
    • 0037144862 scopus 로고    scopus 로고
    • Phosphorylation and an ATP-dependent process increase the dynamic exchange of H1 in chromatin
    • Dou Y., et al. Phosphorylation and an ATP-dependent process increase the dynamic exchange of H1 in chromatin. J. Cell Biol. 2002, 158(7):1161-1170.
    • (2002) J. Cell Biol. , vol.158 , Issue.7 , pp. 1161-1170
    • Dou, Y.1
  • 75
    • 0242721659 scopus 로고    scopus 로고
    • The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation
    • Contreras A., et al. The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation. Mol. Cell. Biol. 2003, 23(23):8626-8636.
    • (2003) Mol. Cell. Biol. , vol.23 , Issue.23 , pp. 8626-8636
    • Contreras, A.1
  • 76
    • 33744548700 scopus 로고    scopus 로고
    • Phosphorylation of the linker histone H1 by CDK regulates its binding to HP1alpha
    • Hale T.K., et al. Phosphorylation of the linker histone H1 by CDK regulates its binding to HP1alpha. Mol. Cell 2006, 22(5):693-699.
    • (2006) Mol. Cell , vol.22 , Issue.5 , pp. 693-699
    • Hale, T.K.1
  • 77
    • 49249102932 scopus 로고    scopus 로고
    • Phosphorylation of the carboxy-terminal domain of histone H1: effects on secondary structure and DNA condensation
    • Roque A., et al. Phosphorylation of the carboxy-terminal domain of histone H1: effects on secondary structure and DNA condensation. Nucleic Acids Res. 2008, 36(14):4719-4726.
    • (2008) Nucleic Acids Res. , vol.36 , Issue.14 , pp. 4719-4726
    • Roque, A.1
  • 78
    • 0030000430 scopus 로고    scopus 로고
    • Effects of cell cycle dependent histone H1 phosphorylation on chromatin structure and chromatin replication
    • Halmer L., Gruss C. Effects of cell cycle dependent histone H1 phosphorylation on chromatin structure and chromatin replication. Nucleic Acids Res. 1996, 24(8):1420-1427.
    • (1996) Nucleic Acids Res. , vol.24 , Issue.8 , pp. 1420-1427
    • Halmer, L.1    Gruss, C.2
  • 79
    • 32844455961 scopus 로고    scopus 로고
    • Transcriptional silencing of the mouse mammary tumor virus promoter through chromatin remodeling is concomitant with histone H1 phosphorylation and histone H3 hyperphosphorylation at M phase
    • Bhattacharjee R.N., Archer T.K. Transcriptional silencing of the mouse mammary tumor virus promoter through chromatin remodeling is concomitant with histone H1 phosphorylation and histone H3 hyperphosphorylation at M phase. Virology 2006, 346(1):1-6.
    • (2006) Virology , vol.346 , Issue.1 , pp. 1-6
    • Bhattacharjee, R.N.1    Archer, T.K.2
  • 80
    • 0036220074 scopus 로고    scopus 로고
    • Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes
    • Horn P.J., et al. Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes. Nat. Struct. Biol. 2002, 9(4):263-267.
    • (2002) Nat. Struct. Biol. , vol.9 , Issue.4 , pp. 263-267
    • Horn, P.J.1
  • 81
    • 59149100868 scopus 로고    scopus 로고
    • Linker histone phosphorylation regulates global timing of replication origin firing
    • Thiriet C., Hayes J.J. Linker histone phosphorylation regulates global timing of replication origin firing. J. Biol. Chem. 2009, 284(5):2823-2829.
    • (2009) J. Biol. Chem. , vol.284 , Issue.5 , pp. 2823-2829
    • Thiriet, C.1    Hayes, J.J.2
  • 82
    • 0037067228 scopus 로고    scopus 로고
    • Histone H1 variants differentially inhibit DNA replication through an affinity for chromatin mediated by their carboxyl-terminal domains
    • De S., et al. Histone H1 variants differentially inhibit DNA replication through an affinity for chromatin mediated by their carboxyl-terminal domains. Gene 2002, 292(1-2):173-181.
    • (2002) Gene , vol.292 , Issue.1-2 , pp. 173-181
    • De, S.1
  • 83
    • 0019452992 scopus 로고
    • A mouse temperature-sensitive mutant defective in H1 histone phosphorylation is defective in deoxyribonucleic acid synthesis and chromosome condensation
    • Yasuda H., et al. A mouse temperature-sensitive mutant defective in H1 histone phosphorylation is defective in deoxyribonucleic acid synthesis and chromosome condensation. Biochemistry 1981, 20(15):4414-4419.
    • (1981) Biochemistry , vol.20 , Issue.15 , pp. 4414-4419
    • Yasuda, H.1
  • 84
    • 15444363490 scopus 로고    scopus 로고
    • Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation
    • Alexandrow M.G., Hamlin J.L. Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation. J. Cell Biol. 2005, 168(6):875-886.
    • (2005) J. Cell Biol. , vol.168 , Issue.6 , pp. 875-886
    • Alexandrow, M.G.1    Hamlin, J.L.2
  • 85
    • 77952985933 scopus 로고    scopus 로고
    • Core and linker histone modifications involved in the DNA damage response
    • Chubb J.E., Rea S. Core and linker histone modifications involved in the DNA damage response. Subcell. Biochem. 2010, 50:17-42.
    • (2010) Subcell. Biochem. , vol.50 , pp. 17-42
    • Chubb, J.E.1    Rea, S.2
  • 86
    • 84867055872 scopus 로고    scopus 로고
    • Functional interplay between p53 acetylation and H1.2 phosphorylation in p53-regulated transcription
    • Kim K., et al. Functional interplay between p53 acetylation and H1.2 phosphorylation in p53-regulated transcription. Oncogene 2012, 31(39):4290-4301.
    • (2012) Oncogene , vol.31 , Issue.39 , pp. 4290-4301
    • Kim, K.1
  • 87
    • 13844321898 scopus 로고    scopus 로고
    • Phosphorylation of linker histones by DNA-dependent protein kinase is required for DNA ligase IV-dependent ligation in the presence of histone H1
    • Kysela B., Chovanec M., Jeggo P.A. Phosphorylation of linker histones by DNA-dependent protein kinase is required for DNA ligase IV-dependent ligation in the presence of histone H1. Proc. Natl. Acad. Sci. U. S. A. 2005, 102(6):1877-1882.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , Issue.6 , pp. 1877-1882
    • Kysela, B.1    Chovanec, M.2    Jeggo, P.A.3
  • 88
    • 33845491444 scopus 로고    scopus 로고
    • Global modulation of chromatin dynamics mediated by dephosphorylation of linker histone H1 is necessary for erythroid differentiation
    • Yellajoshyula D., Brown D.T. Global modulation of chromatin dynamics mediated by dephosphorylation of linker histone H1 is necessary for erythroid differentiation. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(49):18568-18573.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , Issue.49 , pp. 18568-18573
    • Yellajoshyula, D.1    Brown, D.T.2
  • 89
    • 0027434260 scopus 로고
    • Growth factors that repress myoblast differentiation sustain phosphorylation of a specific site on histone H1
    • Cole F., et al. Growth factors that repress myoblast differentiation sustain phosphorylation of a specific site on histone H1. J. Biol. Chem. 1993, 268(3):1580-1585.
    • (1993) J. Biol. Chem. , vol.268 , Issue.3 , pp. 1580-1585
    • Cole, F.1
  • 90
    • 39149098441 scopus 로고    scopus 로고
    • H1 histone subtype constitution and phosphorylation state of the ageing cell system of human peripheral blood lymphocytes
    • Happel N., et al. H1 histone subtype constitution and phosphorylation state of the ageing cell system of human peripheral blood lymphocytes. Exp. Gerontol. 2008, 43(3):184-199.
    • (2008) Exp. Gerontol. , vol.43 , Issue.3 , pp. 184-199
    • Happel, N.1
  • 91
    • 33645975866 scopus 로고    scopus 로고
    • Immunodetection of GLUT1, p63 and phospho-histone H1 in invasive head and neck squamous carcinoma: correlation of immunohistochemical staining patterns with keratinization
    • Burstein D.E., et al. Immunodetection of GLUT1, p63 and phospho-histone H1 in invasive head and neck squamous carcinoma: correlation of immunohistochemical staining patterns with keratinization. Histopathology 2006, 48(6):717-722.
    • (2006) Histopathology , vol.48 , Issue.6 , pp. 717-722
    • Burstein, D.E.1
  • 92
    • 84899872962 scopus 로고    scopus 로고
    • Histone H1 phosphorylation in breast cancer
    • Harshman S.W., et al. Histone H1 phosphorylation in breast cancer. J. Proteome Res. 2014, 13(5):2453-2467.
    • (2014) J. Proteome Res. , vol.13 , Issue.5 , pp. 2453-2467
    • Harshman, S.W.1
  • 93
    • 84937511561 scopus 로고    scopus 로고
    • Aurora B expression and histone variant H1.4S27 phosphorylation are no longer coordinated during metaphase in aneuploid colorectal carcinomas
    • Sijare F., et al. Aurora B expression and histone variant H1.4S27 phosphorylation are no longer coordinated during metaphase in aneuploid colorectal carcinomas. Virchows Arch. 2015, 466(5):503-515.
    • (2015) Virchows Arch. , vol.466 , Issue.5 , pp. 503-515
    • Sijare, F.1
  • 94
    • 84879906166 scopus 로고    scopus 로고
    • Alterations of histone H1 phosphorylation during bladder carcinogenesis
    • Telu K.H., et al. Alterations of histone H1 phosphorylation during bladder carcinogenesis. J. Proteome Res. 2013, 12(7):3317-3326.
    • (2013) J. Proteome Res. , vol.12 , Issue.7 , pp. 3317-3326
    • Telu, K.H.1
  • 95
    • 0022422779 scopus 로고
    • Two histone H1-specific protein-lysine N-methyltransferases from Euglena gracilis. Purification and characterization
    • Tuck M.T., Farooqui J.Z., Paik W.K. Two histone H1-specific protein-lysine N-methyltransferases from Euglena gracilis. Purification and characterization. J. Biol. Chem. 1985, 260(11):7114-7121.
    • (1985) J. Biol. Chem. , vol.260 , Issue.11 , pp. 7114-7121
    • Tuck, M.T.1    Farooqui, J.Z.2    Paik, W.K.3
  • 96
    • 0022762527 scopus 로고
    • Human spleen histone H1. Isolation and amino acid sequence of a main variant, H1b
    • Ohe Y., Hayashi H., Iwai K. Human spleen histone H1. Isolation and amino acid sequence of a main variant, H1b. J. Biochem. 1986, 100(2):359-368.
    • (1986) J. Biochem. , vol.100 , Issue.2 , pp. 359-368
    • Ohe, Y.1    Hayashi, H.2    Iwai, K.3
  • 97
    • 1942502862 scopus 로고    scopus 로고
    • Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3
    • Kuzmichev A., et al. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol. Cell 2004, 14(2):183-193.
    • (2004) Mol. Cell , vol.14 , Issue.2 , pp. 183-193
    • Kuzmichev, A.1
  • 98
    • 33646848438 scopus 로고    scopus 로고
    • Substrate preferences of the EZH2 histone methyltransferase complex
    • Martin C., Cao R., Zhang Y. Substrate preferences of the EZH2 histone methyltransferase complex. J. Biol. Chem. 2006, 281(13):8365-8370.
    • (2006) J. Biol. Chem. , vol.281 , Issue.13 , pp. 8365-8370
    • Martin, C.1    Cao, R.2    Zhang, Y.3
  • 99
    • 67649800263 scopus 로고    scopus 로고
    • Dynamic Histone H1 Isotype 4 Methylation and Demethylation by Histone Lysine Methyltransferase G9a/KMT1C and the Jumonji Domain-containing JMJD2/KDM4 Proteins
    • Trojer P., et al. Dynamic Histone H1 Isotype 4 Methylation and Demethylation by Histone Lysine Methyltransferase G9a/KMT1C and the Jumonji Domain-containing JMJD2/KDM4 Proteins. J. Biol. Chem. 2009, 284(13):8395-8405.
    • (2009) J. Biol. Chem. , vol.284 , Issue.13 , pp. 8395-8405
    • Trojer, P.1
  • 100
    • 77953411635 scopus 로고    scopus 로고
    • Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D
    • Weiss T., et al. Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D. Epigenetics Chromatin 2010, 3(1):7.
    • (2010) Epigenetics Chromatin , vol.3 , Issue.1 , pp. 7
    • Weiss, T.1
  • 101
    • 0141929385 scopus 로고    scopus 로고
    • Binary switches and modification cassettes in histone biology and beyond
    • Fischle W., Wang Y., Allis C.D. Binary switches and modification cassettes in histone biology and beyond. Nature 2003, 425(6957):475-479.
    • (2003) Nature , vol.425 , Issue.6957 , pp. 475-479
    • Fischle, W.1    Wang, Y.2    Allis, C.D.3
  • 103
    • 0023689262 scopus 로고
    • Doxorubicin induces the acetylation of histone H1 in a human colon cancer cell line (LoVo/DX) selected for resistance to the drug, but not in the sensitive parental line (LoVo)
    • Mannironi C., D'Incalci M. Doxorubicin induces the acetylation of histone H1 in a human colon cancer cell line (LoVo/DX) selected for resistance to the drug, but not in the sensitive parental line (LoVo). Biochem. Biophys. Res. Commun. 1988, 155(3):1221-1229.
    • (1988) Biochem. Biophys. Res. Commun. , vol.155 , Issue.3 , pp. 1221-1229
    • Mannironi, C.1    D'Incalci, M.2
  • 104
    • 4944245398 scopus 로고    scopus 로고
    • Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin
    • Vaquero A., et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell 2004, 16(1):93-105.
    • (2004) Mol. Cell , vol.16 , Issue.1 , pp. 93-105
    • Vaquero, A.1
  • 105
    • 77951023118 scopus 로고    scopus 로고
    • Toward a unified nomenclature for mammalian ADP-ribosyltransferases
    • Hottiger M.O., et al. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem. Sci. 2010, 35(4):208-219.
    • (2010) Trends Biochem. Sci. , vol.35 , Issue.4 , pp. 208-219
    • Hottiger, M.O.1
  • 106
    • 33749260519 scopus 로고    scopus 로고
    • Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going?
    • Hassa P.O., et al. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going?. Microbiol. Mol. Biol. Rev. 2006, 70(3):789-829.
    • (2006) Microbiol. Mol. Biol. Rev. , vol.70 , Issue.3 , pp. 789-829
    • Hassa, P.O.1
  • 107
    • 80052172007 scopus 로고    scopus 로고
    • Histone ADP-ribosylation in DNA repair, replication and transcription
    • Messner S., Hottiger M.O. Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol. 2011, 21(9):534-542.
    • (2011) Trends Cell Biol. , vol.21 , Issue.9 , pp. 534-542
    • Messner, S.1    Hottiger, M.O.2
  • 108
    • 79957572693 scopus 로고    scopus 로고
    • ADP-ribosylation of histones by ARTD1: an additional module of the histone code?
    • Hottiger M.O. ADP-ribosylation of histones by ARTD1: an additional module of the histone code?. FEBS Lett. 2011, 585(11):1595-1599.
    • (2011) FEBS Lett. , vol.585 , Issue.11 , pp. 1595-1599
    • Hottiger, M.O.1
  • 109
    • 78650756134 scopus 로고    scopus 로고
    • PARP-3 and APLF function together to accelerate nonhomologous end-joining
    • Rulten S.L., et al. PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol. Cell 2011, 41(1):33-45.
    • (2011) Mol. Cell , vol.41 , Issue.1 , pp. 33-45
    • Rulten, S.L.1
  • 110
    • 0033600176 scopus 로고    scopus 로고
    • Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
    • Frye R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 1999, 260(1):273-279.
    • (1999) Biochem. Biophys. Res. Commun. , vol.260 , Issue.1 , pp. 273-279
    • Frye, R.A.1
  • 111
    • 20444409132 scopus 로고    scopus 로고
    • Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
    • Liszt G., et al. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem. 2005, 280(22):21313-21320.
    • (2005) J. Biol. Chem. , vol.280 , Issue.22 , pp. 21313-21320
    • Liszt, G.1
  • 112
    • 0242556798 scopus 로고    scopus 로고
    • A chromosomal SIR2 homologue with both histone NAD-dependent ADP-ribosyltransferase and deacetylase activities is involved in DNA repair in Trypanosoma brucei
    • Garcia-Salcedo J.A., et al. A chromosomal SIR2 homologue with both histone NAD-dependent ADP-ribosyltransferase and deacetylase activities is involved in DNA repair in Trypanosoma brucei. EMBO J. 2003, 22(21):5851-5862.
    • (2003) EMBO J. , vol.22 , Issue.21 , pp. 5851-5862
    • Garcia-Salcedo, J.A.1
  • 113
    • 0019332813 scopus 로고
    • ADP-ribosylation of histone H1. Identification of glutamic acid residues 2, 14, and the COOH-terminal lysine residue as modification sites
    • Ogata N., et al. ADP-ribosylation of histone H1. Identification of glutamic acid residues 2, 14, and the COOH-terminal lysine residue as modification sites. J. Biol. Chem. 1980, 255(16):7616-7620.
    • (1980) J. Biol. Chem. , vol.255 , Issue.16 , pp. 7616-7620
    • Ogata, N.1
  • 114
    • 0020983490 scopus 로고
    • Nucleosomal poly(ADP-ribose) polymerase: properties and relaxation of the chromatin structure
    • Aubin R., et al. Nucleosomal poly(ADP-ribose) polymerase: properties and relaxation of the chromatin structure. Princess Takamatsu Symp. 1983, 13:83-91.
    • (1983) Princess Takamatsu Symp. , vol.13 , pp. 83-91
    • Aubin, R.1
  • 115
    • 78751684918 scopus 로고    scopus 로고
    • Poly(ADP-ribose) metabolism is essential for proper nucleoprotein exchange during mouse spermiogenesis
    • Meyer-Ficca M.L., et al. Poly(ADP-ribose) metabolism is essential for proper nucleoprotein exchange during mouse spermiogenesis. Biol. Reprod. 2011, 84(2):218-228.
    • (2011) Biol. Reprod. , vol.84 , Issue.2 , pp. 218-228
    • Meyer-Ficca, M.L.1
  • 116
    • 19444370091 scopus 로고    scopus 로고
    • Poly(ADP-ribosyl)ation during chromatin remodeling steps in rat spermiogenesis
    • Meyer-Ficca M.L., et al. Poly(ADP-ribosyl)ation during chromatin remodeling steps in rat spermiogenesis. Chromosoma 2005, 114(1):67-74.
    • (2005) Chromosoma , vol.114 , Issue.1 , pp. 67-74
    • Meyer-Ficca, M.L.1
  • 117
    • 38949198773 scopus 로고    scopus 로고
    • Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes
    • Krishnakumar R., et al. Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 2008, 319(5864):819-821.
    • (2008) Science , vol.319 , Issue.5864 , pp. 819-821
    • Krishnakumar, R.1
  • 118
    • 44649130038 scopus 로고    scopus 로고
    • Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation
    • Kraus W.L. Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr. Opin. Cell Biol. 2008, 20(3):294-302.
    • (2008) Curr. Opin. Cell Biol. , vol.20 , Issue.3 , pp. 294-302
    • Kraus, W.L.1
  • 119
    • 77957737883 scopus 로고    scopus 로고
    • Histone H1 poly[ADP]-ribosylation regulates the chromatin alterations required for learning consolidation
    • Fontan-Lozano A., et al. Histone H1 poly[ADP]-ribosylation regulates the chromatin alterations required for learning consolidation. J. Neurosci. 2010, 30(40):13305-13313.
    • (2010) J. Neurosci. , vol.30 , Issue.40 , pp. 13305-13313
    • Fontan-Lozano, A.1
  • 120
    • 33751212444 scopus 로고    scopus 로고
    • A breaking strategy for topoisomerase IIbeta/PARP-1-dependent regulated transcription
    • Ju B.G., Rosenfeld M.G. A breaking strategy for topoisomerase IIbeta/PARP-1-dependent regulated transcription. Cell Cycle 2006, 5(22):2557-2560.
    • (2006) Cell Cycle , vol.5 , Issue.22 , pp. 2557-2560
    • Ju, B.G.1    Rosenfeld, M.G.2
  • 121
    • 1342308603 scopus 로고    scopus 로고
    • Citrullination, a possible functional link between susceptibility genes and rheumatoid arthritis
    • Vossenaar E.R., Zendman A.J., Van Venrooij W.J. Citrullination, a possible functional link between susceptibility genes and rheumatoid arthritis. Arthritis Res. Ther. 2004, 6(1):1-5.
    • (2004) Arthritis Res. Ther. , vol.6 , Issue.1 , pp. 1-5
    • Vossenaar, E.R.1    Zendman, A.J.2    Van Venrooij, W.J.3
  • 122
    • 84883214212 scopus 로고    scopus 로고
    • Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis
    • Wang S., Wang Y. Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim. Biophys. Acta 2013, 1829(10):1126-1135.
    • (2013) Biochim. Biophys. Acta , vol.1829 , Issue.10 , pp. 1126-1135
    • Wang, S.1    Wang, Y.2
  • 123
    • 0036295234 scopus 로고    scopus 로고
    • Deimination of arginine residues in nucleophosmin/B23 and histones in HL-60 granulocytes
    • Hagiwara T., et al. Deimination of arginine residues in nucleophosmin/B23 and histones in HL-60 granulocytes. Biochem. Biophys. Res. Commun. 2002, 290(3):979-983.
    • (2002) Biochem. Biophys. Res. Commun. , vol.290 , Issue.3 , pp. 979-983
    • Hagiwara, T.1
  • 124
    • 4444372638 scopus 로고    scopus 로고
    • Histone deimination antagonizes arginine methylation
    • Cuthbert G.L., et al. Histone deimination antagonizes arginine methylation. Cell 2004, 118(5):545-553.
    • (2004) Cell , vol.118 , Issue.5 , pp. 545-553
    • Cuthbert, G.L.1
  • 125
    • 84865190335 scopus 로고    scopus 로고
    • Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor alpha target gene activation
    • Zhang X., et al. Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor alpha target gene activation. Proc. Natl. Acad. Sci. U. S. A. 2012, 109(33):13331-13336.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , Issue.33 , pp. 13331-13336
    • Zhang, X.1
  • 126
    • 84895875371 scopus 로고    scopus 로고
    • Citrullination regulates pluripotency and histone H1 binding to chromatin
    • Christophorou M.A., et al. Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 2014, 507(7490):104-108.
    • (2014) Nature , vol.507 , Issue.7490 , pp. 104-108
    • Christophorou, M.A.1
  • 127
    • 0034730745 scopus 로고    scopus 로고
    • Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila
    • Pham A.D., Sauer F. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science 2000, 289(5488):2357-2360.
    • (2000) Science , vol.289 , Issue.5488 , pp. 2357-2360
    • Pham, A.D.1    Sauer, F.2
  • 128
    • 11144274520 scopus 로고    scopus 로고
    • Monoubiquitinated histone H1B is required for antiviral protection in CD4(+)T cells resistant to HIV-1
    • Lesner A., et al. Monoubiquitinated histone H1B is required for antiviral protection in CD4(+)T cells resistant to HIV-1. Biochemistry 2004, 43(51):16203-16211.
    • (2004) Biochemistry , vol.43 , Issue.51 , pp. 16203-16211
    • Lesner, A.1
  • 129
    • 70449426592 scopus 로고    scopus 로고
    • Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain
    • Tweedie-Cullen R.Y., Reck J.M., Mansuy I.M. Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J. Proteome Res. 2009, 8(11):4966-4982.
    • (2009) J. Proteome Res. , vol.8 , Issue.11 , pp. 4966-4982
    • Tweedie-Cullen, R.Y.1    Reck, J.M.2    Mansuy, I.M.3
  • 130
    • 79953198294 scopus 로고    scopus 로고
    • Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level
    • (p. M110 003590)
    • Danielsen J.M., et al. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol. Cell. Proteomics 2011, 10(3). (p. M110 003590).
    • (2011) Mol. Cell. Proteomics , vol.10 , Issue.3
    • Danielsen, J.M.1
  • 131
    • 77954509272 scopus 로고    scopus 로고
    • Redox control systems in the nucleus: mechanisms and functions
    • Go Y.M., Jones D.P. Redox control systems in the nucleus: mechanisms and functions. Antioxid. Redox Signal. 2010, 13(4):489-509.
    • (2010) Antioxid. Redox Signal. , vol.13 , Issue.4 , pp. 489-509
    • Go, Y.M.1    Jones, D.P.2
  • 132
    • 65049087578 scopus 로고    scopus 로고
    • Role of nuclear glutathione as a key regulator of cell proliferation
    • Pallardo F.V., et al. Role of nuclear glutathione as a key regulator of cell proliferation. Mol. Asp. Med. 2009, 30(1-2):77-85.
    • (2009) Mol. Asp. Med. , vol.30 , Issue.1-2 , pp. 77-85
    • Pallardo, F.V.1
  • 133
    • 0034332614 scopus 로고    scopus 로고
    • Histone carbonylation in vivo and in vitro
    • Wondrak G.T., et al. Histone carbonylation in vivo and in vitro. Biochem. J. 2000, 351(Pt 3):769-777.
    • (2000) Biochem. J. , vol.351 , pp. 769-777
    • Wondrak, G.T.1
  • 134
    • 52049088770 scopus 로고    scopus 로고
    • Oxidative stress and covalent modification of protein with bioactive aldehydes
    • Grimsrud P.A., et al. Oxidative stress and covalent modification of protein with bioactive aldehydes. J. Biol. Chem. 2008, 283(32):21837-21841.
    • (2008) J. Biol. Chem. , vol.283 , Issue.32 , pp. 21837-21841
    • Grimsrud, P.A.1
  • 135
    • 33845390864 scopus 로고    scopus 로고
    • Protein adducts generated from products of lipid oxidation: focus on HNE and one
    • Sayre L.M., et al. Protein adducts generated from products of lipid oxidation: focus on HNE and one. Drug Metab. Rev. 2006, 38(4):651-675.
    • (2006) Drug Metab. Rev. , vol.38 , Issue.4 , pp. 651-675
    • Sayre, L.M.1
  • 136
    • 84859002239 scopus 로고    scopus 로고
    • Histone carbonylation occurs in proliferating cells
    • Garcia-Gimenez J.L., et al. Histone carbonylation occurs in proliferating cells. Free Radic. Biol. Med. 2012, 52(8):1453-1464.
    • (2012) Free Radic. Biol. Med. , vol.52 , Issue.8 , pp. 1453-1464
    • Garcia-Gimenez, J.L.1
  • 137
    • 33644923491 scopus 로고    scopus 로고
    • Carbonyl modification in rat liver histones: decrease with age and increase by dietary restriction
    • Sharma R., et al. Carbonyl modification in rat liver histones: decrease with age and increase by dietary restriction. Free Radic. Biol. Med. 2006, 40(7):1179-1184.
    • (2006) Free Radic. Biol. Med. , vol.40 , Issue.7 , pp. 1179-1184
    • Sharma, R.1
  • 138
    • 11144332565 scopus 로고    scopus 로고
    • Histone demethylation mediated by the nuclear amine oxidase homolog LSD1
    • Shi Y., et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004, 119(7):941-953.
    • (2004) Cell , vol.119 , Issue.7 , pp. 941-953
    • Shi, Y.1
  • 139
    • 0035035184 scopus 로고    scopus 로고
    • Novel effects of nitric oxide
    • Davis K.L., et al. Novel effects of nitric oxide. Annu. Rev. Pharmacol. Toxicol. 2001, 41:203-236.
    • (2001) Annu. Rev. Pharmacol. Toxicol. , vol.41 , pp. 203-236
    • Davis, K.L.1
  • 140
    • 0034925593 scopus 로고    scopus 로고
    • Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction
    • Greenacre S.A., Ischiropoulos H. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic. Res. 2001, 34(6):541-581.
    • (2001) Free Radic. Res. , vol.34 , Issue.6 , pp. 541-581
    • Greenacre, S.A.1    Ischiropoulos, H.2
  • 141
    • 0036479238 scopus 로고    scopus 로고
    • Selective nitration of histone tyrosine residues in vivo in mutatect tumors
    • Haqqani A.S., Kelly J.F., Birnboim H.C. Selective nitration of histone tyrosine residues in vivo in mutatect tumors. J. Biol. Chem. 2002, 277(5):3614-3621.
    • (2002) J. Biol. Chem. , vol.277 , Issue.5 , pp. 3614-3621
    • Haqqani, A.S.1    Kelly, J.F.2    Birnboim, H.C.3
  • 142
    • 0037948843 scopus 로고    scopus 로고
    • Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins
    • Irie Y., et al. Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins. Proc. Natl. Acad. Sci. U. S. A. 2003, 100(10):5634-5639.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , Issue.10 , pp. 5634-5639
    • Irie, Y.1
  • 143
    • 84899473489 scopus 로고    scopus 로고
    • Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark
    • Dai L., et al. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nat. Chem. Biol. 2014, 10(5):365-370.
    • (2014) Nat. Chem. Biol. , vol.10 , Issue.5 , pp. 365-370
    • Dai, L.1
  • 144
    • 80052942443 scopus 로고    scopus 로고
    • Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification
    • Tan M., et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 2011, 146(6):1016-1028.
    • (2011) Cell , vol.146 , Issue.6 , pp. 1016-1028
    • Tan, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.