메뉴 건너뛰기




Volumn 38, Issue 3, 2006, Pages 434-444

Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks

Author keywords

Artificial neural networks; Classification; Injury severity; Problem decomposition; Sensitivity analysis

Indexed keywords

ACCIDENT PREVENTION; BEHAVIORAL RESEARCH; CLASSIFICATION (OF INFORMATION); ENVIRONMENTAL IMPACT; NEURAL NETWORKS; SENSITIVITY ANALYSIS;

EID: 33644889643     PISSN: 00014575     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aap.2005.06.024     Document Type: Article
Times cited : (349)

References (26)
  • 1
    • 0032194845 scopus 로고    scopus 로고
    • An assessment of the effect of driver age on traffic accident involvement using log-linear models
    • M.A. Abdel-aty, C. Chen, and J.R. Schott An assessment of the effect of driver age on traffic accident involvement using log-linear models Acc. Anal. Prev. 30 6 1998 851 861
    • (1998) Acc. Anal. Prev. , vol.30 , Issue.6 , pp. 851-861
    • Abdel-Aty, M.A.1    Chen, C.2    Schott, J.R.3
  • 2
    • 0035689114 scopus 로고    scopus 로고
    • Development of artificial neural network models to predict driver injury severity in traffic accidents at signalizes intersection
    • Paper No. 01-2234
    • Abdelwahab, H.T., Abdel-Aty, M.A., 2001. Development of Artificial Neural Network Models to Predict Driver Injury Severity in Traffic Accidents at Signalizes Intersection. Transportation Research Record 1746, Paper No. 01-2234, pp. 6-13.
    • (2001) Transportation Research Record , vol.1746 , pp. 6-13
    • Abdelwahab, H.T.1    Abdel-Aty, M.A.2
  • 3
    • 0036826985 scopus 로고    scopus 로고
    • Using logistic regression to estimate the influence of accident factors on accident severity
    • A.S. Al-Ghamdi Using logistic regression to estimate the influence of accident factors on accident severity Acc. Anal. Prev. 34 6 2002 729 741
    • (2002) Acc. Anal. Prev. , vol.34 , Issue.6 , pp. 729-741
    • Al-Ghamdi, A.S.1
  • 4
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • E.L. Allwein, R.E. Schapire, and Y. Singer Reducing multiclass to binary: a unifying approach for margin classifiers J. Mach. Learn. Res. 1 2000 113 141
    • (2000) J. Mach. Learn. Res. , vol.1 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 5
    • 0029183827 scopus 로고
    • Efficient classification for multiclass problems using modular neural networks
    • R. Anand, K. Mehrotra, C.K. Mohan, and S. Ranka Efficient classification for multiclass problems using modular neural networks IEEE Trans. Neural Networks 6 1 1995 117 124
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.1 , pp. 117-124
    • Anand, R.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 7
    • 0036707717 scopus 로고    scopus 로고
    • Factors influential in making an injury severity difference to older drivers involved in highway crashes
    • S. Dissanayake, and J.J. Lu Factors influential in making an injury severity difference to older drivers involved in highway crashes Acc. Anal. Prev. 34 5 2002 609 618
    • (2002) Acc. Anal. Prev. , vol.34 , Issue.5 , pp. 609-618
    • Dissanayake, S.1    Lu, J.J.2
  • 8
    • 0000227837 scopus 로고    scopus 로고
    • The relationship between road accident severity and recorded weather
    • J. Edwards The relationship between road accident severity and recorded weather J. Safety Res. 29 4 1998 249 262
    • (1998) J. Safety Res. , vol.29 , Issue.4 , pp. 249-262
    • Edwards, J.1
  • 9
    • 0031131663 scopus 로고    scopus 로고
    • Two-vehicle side impact crashes: The relationship of vehicle and crash characteristics to injury severity
    • C.M. Farmer, E.R. Braver, and E.L. Mitter Two-vehicle side impact crashes: the relationship of vehicle and crash characteristics to injury severity Acc. Anal. Prev. 29 3 1997 399 406
    • (1997) Acc. Anal. Prev. , vol.29 , Issue.3 , pp. 399-406
    • Farmer, C.M.1    Braver, E.R.2    Mitter, E.L.3
  • 10
    • 33644906732 scopus 로고    scopus 로고
    • A visual method for determining variable importance in an artificial neural network model: An empirical benchmark study
    • K.E. Fish, and J.G. Blodgett A visual method for determining variable importance in an artificial neural network model: an empirical benchmark study J. Target. Meas. Anal. Market. 11 3 2003 244 254
    • (2003) J. Target. Meas. Anal. Market. , vol.11 , Issue.3 , pp. 244-254
    • Fish, K.E.1    Blodgett, J.G.2
  • 11
    • 3242665915 scopus 로고    scopus 로고
    • A visual analysis of learning rule effects and variable importance for neural networks employed in data mining operations
    • K.E. Fish, and R.S. Segall A visual analysis of learning rule effects and variable importance for neural networks employed in data mining operations Kybernetes: Int. J. Syst. Cybernet. 33 5/6 2004 1127 1142
    • (2004) Kybernetes: Int. J. Syst. Cybernet. , vol.33 , Issue.56 , pp. 1127-1142
    • Fish, K.E.1    Segall, R.S.2
  • 12
    • 19044382587 scopus 로고    scopus 로고
    • Round robin classification
    • J. Fürnkranz Round robin classification J. Mach. Learn. Res. 2 2002 721 747
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 721-747
    • Fürnkranz, J.1
  • 13
    • 33644878990 scopus 로고    scopus 로고
    • National Center for Statistics and Analysis of the National Highway Traffic Safety Administration
    • GES, 2005. National Automotive Sampling System General Estimates System, National Center for Statistics and Analysis of the National Highway Traffic Safety Administration.
    • (2005) National Automotive Sampling System General Estimates System
  • 15
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward network
    • K. Hornik, M. Stinchcombe, and H. White Universal approximation of an unknown mapping and its derivatives using multilayer feedforward network Neural Networks 3 1990 359 366
    • (1990) Neural Networks , vol.3 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 16
    • 0036558120 scopus 로고    scopus 로고
    • Driver injury severity: An application of ordered probit models
    • K.M. Kockelman, and Y.J. Kweon Driver injury severity: an application of ordered probit models Acc. Anal. Prev. 34 3 2002 313 321
    • (2002) Acc. Anal. Prev. , vol.34 , Issue.3 , pp. 313-321
    • Kockelman, K.M.1    Kweon, Y.J.2
  • 17
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • S. Wermter E. Riloff G. Scheler Montreal, Quebec, Canada Morgan Kaufman Publishing San Francisco, CA
    • R. Kohavi A study of cross-validation and bootstrap for accuracy estimation and model selection S. Wermter E. Riloff G. Scheler The Fourteenth International Joint Conference on Artificial Intelligence (IJCAI) Montreal, Quebec, Canada 1995 Morgan Kaufman Publishing San Francisco, CA 1137 1145
    • (1995) The Fourteenth International Joint Conference on Artificial Intelligence (IJCAI) , pp. 1137-1145
    • Kohavi, R.1
  • 18
    • 0000859430 scopus 로고
    • An application of conditional logistic regression to study the effects of safety belts, the principal impact points, and car weights on drivers' fatalities
    • K.J. Lui, and D. McGee An application of conditional logistic regression to study the effects of safety belts, the principal impact points, and car weights on drivers' fatalities J. Safety Res. 19 4 1988 197 203
    • (1988) J. Safety Res. , vol.19 , Issue.4 , pp. 197-203
    • Lui, K.J.1    McGee, D.2
  • 19
    • 0032588286 scopus 로고    scopus 로고
    • An analysis of urban collisions using an artificial intelligence model
    • L. Mussone, A. Ferrari, and M. Oneta An analysis of urban collisions using an artificial intelligence model Acc. Anal. Prev. 31 1999 705 718
    • (1999) Acc. Anal. Prev. , vol.31 , pp. 705-718
    • Mussone, L.1    Ferrari, A.2    Oneta, M.3
  • 20
    • 0030281607 scopus 로고    scopus 로고
    • Predicting the severity of motor vehicle accident injuries using models of ordered multiple choice
    • C.J. O'Donnell, and D.H. Connor Predicting the severity of motor vehicle accident injuries using models of ordered multiple choice Acc. Anal. Prev. 28 6 1996 739 753
    • (1996) Acc. Anal. Prev. , vol.28 , Issue.6 , pp. 739-753
    • O'Donnell, C.J.1    Connor, D.H.2
  • 22
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • R. Rifkin, and A. Klautau In defense of one-vs-all classification J. Mach. Learn. Res. 5 2004 101 141
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 25
    • 0028444978 scopus 로고
    • Bankruptcy prediction using neural networks
    • R. Wilson, and R. Sharda Bankruptcy prediction using neural networks Decis. Support Syst. 11 1994 545 557
    • (1994) Decis. Support Syst. , vol.11 , pp. 545-557
    • Wilson, R.1    Sharda, R.2
  • 26
    • 0035981287 scopus 로고    scopus 로고
    • Car size and injury risk: A model for injury risk in frontal collisions
    • D.P. Wood, and C.K. Simms Car size and injury risk: a model for injury risk in frontal collisions Acc. Anal. Prev. 34 2002 93 99
    • (2002) Acc. Anal. Prev. , vol.34 , pp. 93-99
    • Wood, D.P.1    Simms, C.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.