-
1
-
-
36148953966
-
Combining principal component regression and artificial neural-networks for more accurate predictions of ground-level ozone
-
Al-Alawi S.M., Abdul-Wahab S.A., Bakheit C.S. Combining principal component regression and artificial neural-networks for more accurate predictions of ground-level ozone. Environ. Model. Softw. 2008, 23:396-403.
-
(2008)
Environ. Model. Softw.
, vol.23
, pp. 396-403
-
-
Al-Alawi, S.M.1
Abdul-Wahab, S.A.2
Bakheit, C.S.3
-
3
-
-
84893071698
-
Systematic approach for the prediction of ground-level air pollution (around an industrial port) using an artificial neural network
-
Baawain M.S., Al-Serihi A.S. Systematic approach for the prediction of ground-level air pollution (around an industrial port) using an artificial neural network. Aerosol Air Qual. Res. February 2014, 14(1):124-134.
-
(2014)
Aerosol Air Qual. Res.
, vol.14
, Issue.1
, pp. 124-134
-
-
Baawain, M.S.1
Al-Serihi, A.S.2
-
4
-
-
0027610496
-
A neural network-based method for short-term predictions of ambient so 2 concentrations in highly polluted industrial areas of complex terrain
-
Božnar M., Lesjak M., Mlakar P. A neural network-based method for short-term predictions of ambient so 2 concentrations in highly polluted industrial areas of complex terrain. Atmos. Environ. Part B. Urban Atmos. 1993, 27(2):221-230.
-
(1993)
Atmos. Environ. Part B. Urban Atmos.
, vol.27
, Issue.2
, pp. 221-230
-
-
Božnar, M.1
Lesjak, M.2
Mlakar, P.3
-
5
-
-
76449085807
-
Prediction of daily maximum ground ozone concentration using support vector machine
-
Chelani A.B. Prediction of daily maximum ground ozone concentration using support vector machine. Environ. Monit. Assess. 2010, 162:169-176.
-
(2010)
Environ. Monit. Assess.
, vol.162
, pp. 169-176
-
-
Chelani, A.B.1
-
6
-
-
80051784843
-
Predicting daily ozone concentration maxima using fuzzy time series based on a two-stage linguistic partition method
-
Cheng C.-H., Huang S.-F., Teoh H.-J. Predicting daily ozone concentration maxima using fuzzy time series based on a two-stage linguistic partition method. Comput. Math. Appl. 2011, 2016-2028.
-
(2011)
Comput. Math. Appl.
, pp. 2016-2028
-
-
Cheng, C.-H.1
Huang, S.-F.2
Teoh, H.-J.3
-
7
-
-
0038891993
-
Sparse online Gaussian processes
-
Csató L., Opper M. Sparse online Gaussian processes. Neural Comput. 2002, 14(3):641-668.
-
(2002)
Neural Comput.
, vol.14
, Issue.3
, pp. 641-668
-
-
Csató, L.1
Opper, M.2
-
8
-
-
27944496859
-
Stochastic model to forecast ground-level ozone concentration at urban and rural areas
-
Duenas C., Fernandez M., Canete S., Carretero J., Liger E. Stochastic model to forecast ground-level ozone concentration at urban and rural areas. Chemosphere 2005, 61:1379-1389.
-
(2005)
Chemosphere
, vol.61
, pp. 1379-1389
-
-
Duenas, C.1
Fernandez, M.2
Canete, S.3
Carretero, J.4
Liger, E.5
-
9
-
-
56049106283
-
Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe
-
EU-Commission Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Communities L 2008, 152:1-44. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF.
-
(2008)
Off. J. Eur. Communities L
, vol.152
, pp. 1-44
-
-
-
10
-
-
79952246361
-
Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and SVM data classification
-
Feng Y., Zhang W., Sun D., Zhang L. Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and SVM data classification. Atmos. Environ. 2011, 45:1979-1985.
-
(2011)
Atmos. Environ.
, vol.45
, pp. 1979-1985
-
-
Feng, Y.1
Zhang, W.2
Sun, D.3
Zhang, L.4
-
11
-
-
84900308360
-
Can artificial neural networks be used to predict the origin of ozone episodes?
-
Fontes T., Silva L., Silva M., Barros N., Carvalho A. Can artificial neural networks be used to predict the origin of ozone episodes?. Sci. Total Environ. 2014, 488-489:197-207.
-
(2014)
Sci. Total Environ.
, pp. 197-207
-
-
Fontes, T.1
Silva, L.2
Silva, M.3
Barros, N.4
Carvalho, A.5
-
12
-
-
84885399625
-
Ensemble statistical post-processing of the national air quality forecast capability: enhancing ozone forecasts in Baltimore, Maryland
-
Garner G.G., Thompson A.M. Ensemble statistical post-processing of the national air quality forecast capability: enhancing ozone forecasts in Baltimore, Maryland. Atmos. Environ. 2013, 81:517-522.
-
(2013)
Atmos. Environ.
, vol.81
, pp. 517-522
-
-
Garner, G.G.1
Thompson, A.M.2
-
13
-
-
84887626698
-
Input variable selection for model-based production control and optimisation
-
Glavan M., Gradišar D., Atanasijević-Kunc M., Strmčnik S., Mušič G. Input variable selection for model-based production control and optimisation. Int. J. Adv. Manuf. Technol. 2013, 68(9-12):2743-2759.
-
(2013)
Int. J. Adv. Manuf. Technol.
, vol.68
, Issue.9-12
, pp. 2743-2759
-
-
Glavan, M.1
Gradišar, D.2
Atanasijević-Kunc, M.3
Strmčnik, S.4
Mušič, G.5
-
14
-
-
84928479548
-
Proopter
-
Gradišar D., Glavan M., Strmčnik S., Mušič G. Proopter. Comput. Ind. Jun. 2015, 70(C):102-115.
-
(2015)
Comput. Ind.
, vol.70
, Issue.C
, pp. 102-115
-
-
Gradišar, D.1
Glavan, M.2
Strmčnik, S.3
Mušič, G.4
-
16
-
-
34548605410
-
Local model identification with Gaussian processes
-
Gregorčič G., Lightbody G. Local model identification with Gaussian processes. IEEE Trans. Neural Netw. 2007, 18(5):1404-1423.
-
(2007)
IEEE Trans. Neural Netw.
, vol.18
, Issue.5
, pp. 1404-1423
-
-
Gregorčič, G.1
Lightbody, G.2
-
17
-
-
52949150838
-
Nonlinear system identification: from multiple-model networks to Gaussian processes
-
Gregorčič G., Lightbody G. Nonlinear system identification: from multiple-model networks to Gaussian processes. Eng. Appl. Artif. Intell. 2008, 21(7):1035-1055.
-
(2008)
Eng. Appl. Artif. Intell.
, vol.21
, Issue.7
, pp. 1035-1055
-
-
Gregorčič, G.1
Lightbody, G.2
-
18
-
-
67349233057
-
Gaussian process approach for modelling of nonlinear systems
-
Gregorčič G., Lightbody G. Gaussian process approach for modelling of nonlinear systems. Eng. Appl. Artif. Intell. 2009, 22(4-5):522-533.
-
(2009)
Eng. Appl. Artif. Intell.
, vol.22
, Issue.4-5
, pp. 522-533
-
-
Gregorčič, G.1
Lightbody, G.2
-
19
-
-
84867026079
-
Gaussian process internal model control
-
Gregorčič G., Lightbody G. Gaussian process internal model control. Int. J. Syst. Sci. 2012, 43(11):2079-2094.
-
(2012)
Int. J. Syst. Sci.
, vol.43
, Issue.11
, pp. 2079-2094
-
-
Gregorčič, G.1
Lightbody, G.2
-
20
-
-
84988289227
-
Evaluation of operational on-line-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: ozone
-
Im U., Bianconi R., Solazzo E., Kioutsioukis I., Badia A., Balzarini A., Bar R., Bellasio R., Brunner D., Chemel C., Curci G., Flemming J., Forkel R., Giordano L., Jimnez-Guerrero P., Hirtl M., Hodzic A., Honzak L., Jorba O., Knote C., Kuenen J.J., Makar P.A., Manders-Groot A., Neal L., Prez J.L., Pirovano G., Pouliot G., Jose R.S., Savage N., Schroder W., Sokhi R.S., Syrakov D., Torian A., Tuccella P., Werhahn J., Wolke R., Yahya K., Zabkar R., Zhang Y., Zhang J., Hogrefe C., Galmarini S. Evaluation of operational on-line-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: ozone. Atmos. Environ. 2015, 115:404-420.
-
(2015)
Atmos. Environ.
, vol.115
, pp. 404-420
-
-
Im, U.1
Bianconi, R.2
Solazzo, E.3
Kioutsioukis, I.4
Badia, A.5
Balzarini, A.6
Bar, R.7
Bellasio, R.8
Brunner, D.9
Chemel, C.10
Curci, G.11
Flemming, J.12
Forkel, R.13
Giordano, L.14
Jimnez-Guerrero, P.15
Hirtl, M.16
Hodzic, A.17
Honzak, L.18
Jorba, O.19
Knote, C.20
Kuenen, J.J.21
Makar, P.A.22
Manders-Groot, A.23
Neal, L.24
Prez, J.L.25
Pirovano, G.26
Pouliot, G.27
Jose, R.S.28
Savage, N.29
Schroder, W.30
Sokhi, R.S.31
Syrakov, D.32
Torian, A.33
Tuccella, P.34
Werhahn, J.35
Wolke, R.36
Yahya, K.37
Zabkar, R.38
Zhang, Y.39
Zhang, J.40
Hogrefe, C.41
Galmarini, S.42
more..
-
22
-
-
29244441730
-
Dynamic systems identification with Gaussian processes
-
Kocijan J., Girard A., Banko B., Murray-Smith R. Dynamic systems identification with Gaussian processes. Math. Comput. Model. Dyn. Syst. 2005, 11(4):411-424.
-
(2005)
Math. Comput. Model. Dyn. Syst.
, vol.11
, Issue.4
, pp. 411-424
-
-
Kocijan, J.1
Girard, A.2
Banko, B.3
Murray-Smith, R.4
-
23
-
-
84937763093
-
Regressor selection for ozone prediction
-
Kocijan J., Hančič M., Petelin D., Božnar M.Z., Mlakar P. Regressor selection for ozone prediction. Simul. Model. Pract. Theory 2015, 54:101-115.
-
(2015)
Simul. Model. Pract. Theory
, vol.54
, pp. 101-115
-
-
Kocijan, J.1
Hančič, M.2
Petelin, D.3
Božnar, M.Z.4
Mlakar, P.5
-
24
-
-
0000455229
-
A statistical approach to some basic mine valuation problems on the Witwatersrand
-
Krige D.G. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 1951, 52(6):119-139.
-
(1951)
J. Chem. Metall. Min. Soc. S. Afr.
, vol.52
, Issue.6
, pp. 119-139
-
-
Krige, D.G.1
-
25
-
-
34047160611
-
Fuzzy system models combined with nonlinear regression for daily ground-level ozone predictions
-
Lin Y., Cobourn W.G. Fuzzy system models combined with nonlinear regression for daily ground-level ozone predictions. Atmos. Environ. 2007, 41:3502-3513.
-
(2007)
Atmos. Environ.
, vol.41
, pp. 3502-3513
-
-
Lin, Y.1
Cobourn, W.G.2
-
26
-
-
84905037329
-
Learning machines: rationale and application in ground-level ozone prediction
-
Lu W.-Z., Wang D. Learning machines: rationale and application in ground-level ozone prediction. Appl. Soft Comput. 2014, 24:135-141.
-
(2014)
Appl. Soft Comput.
, vol.24
, pp. 135-141
-
-
Lu, W.-Z.1
Wang, D.2
-
27
-
-
0003319647
-
Introduction to Gaussian processes
-
MacKay D.J.C. Introduction to Gaussian processes. NATO ASI Ser. 1998, 168:133-166.
-
(1998)
NATO ASI Ser.
, vol.168
, pp. 133-166
-
-
MacKay, D.J.C.1
-
29
-
-
84874911486
-
Application of multiple linear regression models and artificial neural networks on the surface ozone forecast in the greater Athens area, Greece
-
Moustris K.P., Nastos P.T., Larissi I.K., Paliatsos A.G. Application of multiple linear regression models and artificial neural networks on the surface ozone forecast in the greater Athens area, Greece. Adv. Meteorol. 2012, 2012:1-8.
-
(2012)
Adv. Meteorol.
, vol.2012
, pp. 1-8
-
-
Moustris, K.P.1
Nastos, P.T.2
Larissi, I.K.3
Paliatsos, A.G.4
-
31
-
-
84875931252
-
Ozone prediction based on meteorological variables: a fuzzy inductive reasoning approach
-
Nebot A., Mugica V., Escobet A. Ozone prediction based on meteorological variables: a fuzzy inductive reasoning approach. Atmos. Chem. Phys. Discuss. 2008, 8:12343-12370.
-
(2008)
Atmos. Chem. Phys. Discuss.
, vol.8
, pp. 12343-12370
-
-
Nebot, A.1
Mugica, V.2
Escobet, A.3
-
32
-
-
0002978835
-
On curve fitting and optimal design for regression (with discussion)
-
O'Hagan A. On curve fitting and optimal design for regression (with discussion). J. R. Stat. Soc. Ser. B Methodol. 1978, 40(1):1-42.
-
(1978)
J. R. Stat. Soc. Ser. B Methodol.
, vol.40
, Issue.1
, pp. 1-42
-
-
O'Hagan, A.1
-
33
-
-
84875926322
-
Evolving Gaussian process models for the prediction of ozone concentration in the air
-
Petelin D., Grancharova A., Kocijan J. Evolving Gaussian process models for the prediction of ozone concentration in the air. Simul. Model. Pract. Theory 2013, 33(1):68-80.
-
(2013)
Simul. Model. Pract. Theory
, vol.33
, Issue.1
, pp. 68-80
-
-
Petelin, D.1
Grancharova, A.2
Kocijan, J.3
-
36
-
-
84958528622
-
Ozone forecasting using an on-line updating Gaussian-process model
-
Petelin D., Mlakar P., Božnar M.Z., Grašič B., Kocijan J. Ozone forecasting using an on-line updating Gaussian-process model. Int. J. Environ. Pollut. 2015, 57(3/4):111-122.
-
(2015)
Int. J. Environ. Pollut.
, vol.57
, Issue.3-4
, pp. 111-122
-
-
Petelin, D.1
Mlakar, P.2
Božnar, M.Z.3
Grašič, B.4
Kocijan, J.5
-
37
-
-
38849166405
-
-
The MIT Press, Cambridge, MA, USA, Ch. Approximation methods for Gaussian process regression
-
Quinonero-Candela J., Rasmussen C.E., Williams C.K.I. Large-scale Kernel Machines. Neural Information Processing September 2007, 203-223. The MIT Press, Cambridge, MA, USA, Ch. Approximation methods for Gaussian process regression.
-
(2007)
Large-scale Kernel Machines. Neural Information Processing
, pp. 203-223
-
-
Quinonero-Candela, J.1
Rasmussen, C.E.2
Williams, C.K.I.3
-
38
-
-
79551662807
-
Online sparse Gaussian process regression and its applications
-
Ranganathan A., Yang M.-H., Ho J. Online sparse Gaussian process regression and its applications. IEEE Trans. Image Process. 2011, 20(2):391-404.
-
(2011)
IEEE Trans. Image Process.
, vol.20
, Issue.2
, pp. 391-404
-
-
Ranganathan, A.1
Yang, M.-H.2
Ho, J.3
-
41
-
-
12444291490
-
Gaussian processes for machine learning
-
Seeger M. Gaussian processes for machine learning. Int. J. Neural Syst. 2004, 14:2004.
-
(2004)
Int. J. Neural Syst.
, vol.14
, pp. 2004
-
-
Seeger, M.1
-
44
-
-
80053619618
-
-
Chapman and Hall/CRC, Taylor & Francis Group, Boca Raton, FL
-
Shi J.Q., Choi T. Gaussian Process Regression Analysis for Functional Data 2011, Chapman and Hall/CRC, Taylor & Francis Group, Boca Raton, FL.
-
(2011)
Gaussian Process Regression Analysis for Functional Data
-
-
Shi, J.Q.1
Choi, T.2
-
45
-
-
15244348898
-
Hierarchical Gaussian process mixtures for regression
-
Shi J.Q., Murray-Smith R., Titterington D.M. Hierarchical Gaussian process mixtures for regression. Stat. Comput. 2005, 15(1):31-41.
-
(2005)
Stat. Comput.
, vol.15
, Issue.1
, pp. 31-41
-
-
Shi, J.Q.1
Murray-Smith, R.2
Titterington, D.M.3
-
47
-
-
84884952307
-
Prediction of 8 h-average ozone concentration using a supervised hidden Markov model combined with generalized linear models
-
Sun W., Zhang H., Palazoglu A. Prediction of 8 h-average ozone concentration using a supervised hidden Markov model combined with generalized linear models. Atmos. Environ. 2013, 81:199-208.
-
(2013)
Atmos. Environ.
, vol.81
, pp. 199-208
-
-
Sun, W.1
Zhang, H.2
Palazoglu, A.3
-
48
-
-
84897465984
-
A data-integrated simulation model to forecast ground-level ozone concentration
-
Sundaramoorthi D. A data-integrated simulation model to forecast ground-level ozone concentration. Ann. Oper. Res. 2014, 216:53-69.
-
(2014)
Ann. Oper. Res.
, vol.216
, pp. 53-69
-
-
Sundaramoorthi, D.1
|