메뉴 건너뛰기




Volumn 131, Issue , 2016, Pages 326-333

On-line algorithm for ground-level ozone prediction with a mobile station

Author keywords

Air pollution; Evolving model; Gaussian process model; Mobile air quality measurement station; Ozone; Prediction of ozone concentration; Statistical modelling

Indexed keywords

AIR POLLUTION; AIR QUALITY; AIR QUALITY STANDARDS; CLIMATE CHANGE; FORECASTING; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); GEOGRAPHICAL REGIONS; LANDFORMS; LOCATION; OZONE; OZONE LAYER; QUALITY CONTROL;

EID: 84958568083     PISSN: 13522310     EISSN: 18732844     Source Type: Journal    
DOI: 10.1016/j.atmosenv.2016.02.012     Document Type: Article
Times cited : (15)

References (48)
  • 1
    • 36148953966 scopus 로고    scopus 로고
    • Combining principal component regression and artificial neural-networks for more accurate predictions of ground-level ozone
    • Al-Alawi S.M., Abdul-Wahab S.A., Bakheit C.S. Combining principal component regression and artificial neural-networks for more accurate predictions of ground-level ozone. Environ. Model. Softw. 2008, 23:396-403.
    • (2008) Environ. Model. Softw. , vol.23 , pp. 396-403
    • Al-Alawi, S.M.1    Abdul-Wahab, S.A.2    Bakheit, C.S.3
  • 3
    • 84893071698 scopus 로고    scopus 로고
    • Systematic approach for the prediction of ground-level air pollution (around an industrial port) using an artificial neural network
    • Baawain M.S., Al-Serihi A.S. Systematic approach for the prediction of ground-level air pollution (around an industrial port) using an artificial neural network. Aerosol Air Qual. Res. February 2014, 14(1):124-134.
    • (2014) Aerosol Air Qual. Res. , vol.14 , Issue.1 , pp. 124-134
    • Baawain, M.S.1    Al-Serihi, A.S.2
  • 4
    • 0027610496 scopus 로고
    • A neural network-based method for short-term predictions of ambient so 2 concentrations in highly polluted industrial areas of complex terrain
    • Božnar M., Lesjak M., Mlakar P. A neural network-based method for short-term predictions of ambient so 2 concentrations in highly polluted industrial areas of complex terrain. Atmos. Environ. Part B. Urban Atmos. 1993, 27(2):221-230.
    • (1993) Atmos. Environ. Part B. Urban Atmos. , vol.27 , Issue.2 , pp. 221-230
    • Božnar, M.1    Lesjak, M.2    Mlakar, P.3
  • 5
    • 76449085807 scopus 로고    scopus 로고
    • Prediction of daily maximum ground ozone concentration using support vector machine
    • Chelani A.B. Prediction of daily maximum ground ozone concentration using support vector machine. Environ. Monit. Assess. 2010, 162:169-176.
    • (2010) Environ. Monit. Assess. , vol.162 , pp. 169-176
    • Chelani, A.B.1
  • 6
    • 80051784843 scopus 로고    scopus 로고
    • Predicting daily ozone concentration maxima using fuzzy time series based on a two-stage linguistic partition method
    • Cheng C.-H., Huang S.-F., Teoh H.-J. Predicting daily ozone concentration maxima using fuzzy time series based on a two-stage linguistic partition method. Comput. Math. Appl. 2011, 2016-2028.
    • (2011) Comput. Math. Appl. , pp. 2016-2028
    • Cheng, C.-H.1    Huang, S.-F.2    Teoh, H.-J.3
  • 7
    • 0038891993 scopus 로고    scopus 로고
    • Sparse online Gaussian processes
    • Csató L., Opper M. Sparse online Gaussian processes. Neural Comput. 2002, 14(3):641-668.
    • (2002) Neural Comput. , vol.14 , Issue.3 , pp. 641-668
    • Csató, L.1    Opper, M.2
  • 8
    • 27944496859 scopus 로고    scopus 로고
    • Stochastic model to forecast ground-level ozone concentration at urban and rural areas
    • Duenas C., Fernandez M., Canete S., Carretero J., Liger E. Stochastic model to forecast ground-level ozone concentration at urban and rural areas. Chemosphere 2005, 61:1379-1389.
    • (2005) Chemosphere , vol.61 , pp. 1379-1389
    • Duenas, C.1    Fernandez, M.2    Canete, S.3    Carretero, J.4    Liger, E.5
  • 9
    • 56049106283 scopus 로고    scopus 로고
    • Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe
    • EU-Commission Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Communities L 2008, 152:1-44. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF.
    • (2008) Off. J. Eur. Communities L , vol.152 , pp. 1-44
  • 10
    • 79952246361 scopus 로고    scopus 로고
    • Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and SVM data classification
    • Feng Y., Zhang W., Sun D., Zhang L. Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and SVM data classification. Atmos. Environ. 2011, 45:1979-1985.
    • (2011) Atmos. Environ. , vol.45 , pp. 1979-1985
    • Feng, Y.1    Zhang, W.2    Sun, D.3    Zhang, L.4
  • 11
    • 84900308360 scopus 로고    scopus 로고
    • Can artificial neural networks be used to predict the origin of ozone episodes?
    • Fontes T., Silva L., Silva M., Barros N., Carvalho A. Can artificial neural networks be used to predict the origin of ozone episodes?. Sci. Total Environ. 2014, 488-489:197-207.
    • (2014) Sci. Total Environ. , pp. 197-207
    • Fontes, T.1    Silva, L.2    Silva, M.3    Barros, N.4    Carvalho, A.5
  • 12
    • 84885399625 scopus 로고    scopus 로고
    • Ensemble statistical post-processing of the national air quality forecast capability: enhancing ozone forecasts in Baltimore, Maryland
    • Garner G.G., Thompson A.M. Ensemble statistical post-processing of the national air quality forecast capability: enhancing ozone forecasts in Baltimore, Maryland. Atmos. Environ. 2013, 81:517-522.
    • (2013) Atmos. Environ. , vol.81 , pp. 517-522
    • Garner, G.G.1    Thompson, A.M.2
  • 16
    • 34548605410 scopus 로고    scopus 로고
    • Local model identification with Gaussian processes
    • Gregorčič G., Lightbody G. Local model identification with Gaussian processes. IEEE Trans. Neural Netw. 2007, 18(5):1404-1423.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.5 , pp. 1404-1423
    • Gregorčič, G.1    Lightbody, G.2
  • 17
    • 52949150838 scopus 로고    scopus 로고
    • Nonlinear system identification: from multiple-model networks to Gaussian processes
    • Gregorčič G., Lightbody G. Nonlinear system identification: from multiple-model networks to Gaussian processes. Eng. Appl. Artif. Intell. 2008, 21(7):1035-1055.
    • (2008) Eng. Appl. Artif. Intell. , vol.21 , Issue.7 , pp. 1035-1055
    • Gregorčič, G.1    Lightbody, G.2
  • 18
    • 67349233057 scopus 로고    scopus 로고
    • Gaussian process approach for modelling of nonlinear systems
    • Gregorčič G., Lightbody G. Gaussian process approach for modelling of nonlinear systems. Eng. Appl. Artif. Intell. 2009, 22(4-5):522-533.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , Issue.4-5 , pp. 522-533
    • Gregorčič, G.1    Lightbody, G.2
  • 19
    • 84867026079 scopus 로고    scopus 로고
    • Gaussian process internal model control
    • Gregorčič G., Lightbody G. Gaussian process internal model control. Int. J. Syst. Sci. 2012, 43(11):2079-2094.
    • (2012) Int. J. Syst. Sci. , vol.43 , Issue.11 , pp. 2079-2094
    • Gregorčič, G.1    Lightbody, G.2
  • 24
    • 0000455229 scopus 로고
    • A statistical approach to some basic mine valuation problems on the Witwatersrand
    • Krige D.G. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 1951, 52(6):119-139.
    • (1951) J. Chem. Metall. Min. Soc. S. Afr. , vol.52 , Issue.6 , pp. 119-139
    • Krige, D.G.1
  • 25
    • 34047160611 scopus 로고    scopus 로고
    • Fuzzy system models combined with nonlinear regression for daily ground-level ozone predictions
    • Lin Y., Cobourn W.G. Fuzzy system models combined with nonlinear regression for daily ground-level ozone predictions. Atmos. Environ. 2007, 41:3502-3513.
    • (2007) Atmos. Environ. , vol.41 , pp. 3502-3513
    • Lin, Y.1    Cobourn, W.G.2
  • 26
    • 84905037329 scopus 로고    scopus 로고
    • Learning machines: rationale and application in ground-level ozone prediction
    • Lu W.-Z., Wang D. Learning machines: rationale and application in ground-level ozone prediction. Appl. Soft Comput. 2014, 24:135-141.
    • (2014) Appl. Soft Comput. , vol.24 , pp. 135-141
    • Lu, W.-Z.1    Wang, D.2
  • 27
    • 0003319647 scopus 로고    scopus 로고
    • Introduction to Gaussian processes
    • MacKay D.J.C. Introduction to Gaussian processes. NATO ASI Ser. 1998, 168:133-166.
    • (1998) NATO ASI Ser. , vol.168 , pp. 133-166
    • MacKay, D.J.C.1
  • 29
    • 84874911486 scopus 로고    scopus 로고
    • Application of multiple linear regression models and artificial neural networks on the surface ozone forecast in the greater Athens area, Greece
    • Moustris K.P., Nastos P.T., Larissi I.K., Paliatsos A.G. Application of multiple linear regression models and artificial neural networks on the surface ozone forecast in the greater Athens area, Greece. Adv. Meteorol. 2012, 2012:1-8.
    • (2012) Adv. Meteorol. , vol.2012 , pp. 1-8
    • Moustris, K.P.1    Nastos, P.T.2    Larissi, I.K.3    Paliatsos, A.G.4
  • 31
    • 84875931252 scopus 로고    scopus 로고
    • Ozone prediction based on meteorological variables: a fuzzy inductive reasoning approach
    • Nebot A., Mugica V., Escobet A. Ozone prediction based on meteorological variables: a fuzzy inductive reasoning approach. Atmos. Chem. Phys. Discuss. 2008, 8:12343-12370.
    • (2008) Atmos. Chem. Phys. Discuss. , vol.8 , pp. 12343-12370
    • Nebot, A.1    Mugica, V.2    Escobet, A.3
  • 32
    • 0002978835 scopus 로고
    • On curve fitting and optimal design for regression (with discussion)
    • O'Hagan A. On curve fitting and optimal design for regression (with discussion). J. R. Stat. Soc. Ser. B Methodol. 1978, 40(1):1-42.
    • (1978) J. R. Stat. Soc. Ser. B Methodol. , vol.40 , Issue.1 , pp. 1-42
    • O'Hagan, A.1
  • 33
    • 84875926322 scopus 로고    scopus 로고
    • Evolving Gaussian process models for the prediction of ozone concentration in the air
    • Petelin D., Grancharova A., Kocijan J. Evolving Gaussian process models for the prediction of ozone concentration in the air. Simul. Model. Pract. Theory 2013, 33(1):68-80.
    • (2013) Simul. Model. Pract. Theory , vol.33 , Issue.1 , pp. 68-80
    • Petelin, D.1    Grancharova, A.2    Kocijan, J.3
  • 38
    • 79551662807 scopus 로고    scopus 로고
    • Online sparse Gaussian process regression and its applications
    • Ranganathan A., Yang M.-H., Ho J. Online sparse Gaussian process regression and its applications. IEEE Trans. Image Process. 2011, 20(2):391-404.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.2 , pp. 391-404
    • Ranganathan, A.1    Yang, M.-H.2    Ho, J.3
  • 41
    • 12444291490 scopus 로고    scopus 로고
    • Gaussian processes for machine learning
    • Seeger M. Gaussian processes for machine learning. Int. J. Neural Syst. 2004, 14:2004.
    • (2004) Int. J. Neural Syst. , vol.14 , pp. 2004
    • Seeger, M.1
  • 45
    • 15244348898 scopus 로고    scopus 로고
    • Hierarchical Gaussian process mixtures for regression
    • Shi J.Q., Murray-Smith R., Titterington D.M. Hierarchical Gaussian process mixtures for regression. Stat. Comput. 2005, 15(1):31-41.
    • (2005) Stat. Comput. , vol.15 , Issue.1 , pp. 31-41
    • Shi, J.Q.1    Murray-Smith, R.2    Titterington, D.M.3
  • 47
    • 84884952307 scopus 로고    scopus 로고
    • Prediction of 8 h-average ozone concentration using a supervised hidden Markov model combined with generalized linear models
    • Sun W., Zhang H., Palazoglu A. Prediction of 8 h-average ozone concentration using a supervised hidden Markov model combined with generalized linear models. Atmos. Environ. 2013, 81:199-208.
    • (2013) Atmos. Environ. , vol.81 , pp. 199-208
    • Sun, W.1    Zhang, H.2    Palazoglu, A.3
  • 48
    • 84897465984 scopus 로고    scopus 로고
    • A data-integrated simulation model to forecast ground-level ozone concentration
    • Sundaramoorthi D. A data-integrated simulation model to forecast ground-level ozone concentration. Ann. Oper. Res. 2014, 216:53-69.
    • (2014) Ann. Oper. Res. , vol.216 , pp. 53-69
    • Sundaramoorthi, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.