메뉴 건너뛰기




Volumn 54, Issue , 2015, Pages 101-115

Regressor selection for ozone prediction

Author keywords

Black box modelling; Dynamical systems; Prediction of ozone concentration; Regression modelling; Regressor selection

Indexed keywords

COST FUNCTIONS; DYNAMICAL SYSTEMS; FORECASTING;

EID: 84937763093     PISSN: 1569190X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.simpat.2015.03.004     Document Type: Article
Times cited : (6)

References (35)
  • 1
  • 2
    • 36148953966 scopus 로고    scopus 로고
    • Combining principal component regression and artificial neural-networks for more accurate predictions of ground-level ozone
    • S.M. Al-Alawi, S.A. Abdul-Wahab, and C.S. Bakheit Combining principal component regression and artificial neural-networks for more accurate predictions of ground-level ozone Environ. Model. Softw. 23 2008 396 403
    • (2008) Environ. Model. Softw. , vol.23 , pp. 396-403
    • Al-Alawi, S.M.1    Abdul-Wahab, S.A.2    Bakheit, C.S.3
  • 3
    • 76449085807 scopus 로고    scopus 로고
    • Prediction of daily maximum ground ozone concentration using support vector machine
    • A.B. Chelani Prediction of daily maximum ground ozone concentration using support vector machine Environ. Monit. Assess. 162 2010 169 176
    • (2010) Environ. Monit. Assess. , vol.162 , pp. 169-176
    • Chelani, A.B.1
  • 4
    • 80051784843 scopus 로고    scopus 로고
    • Predicting daily ozone concentration maxima using fuzzy time series based on a two-stage linguistic partition method
    • C.-H. Cheng, S.-F. Huang, and H.-J. Teoh Predicting daily ozone concentration maxima using fuzzy time series based on a two-stage linguistic partition method Comput. Math. Appl. 2011 2016 2028
    • (2011) Comput. Math. Appl. , pp. 2016-2028
    • Cheng, C.-H.1    Huang, S.-F.2    Teoh, H.-J.3
  • 5
    • 27944496859 scopus 로고    scopus 로고
    • Stochastic model to forecast ground-level ozone concentration at urban and rural areas
    • C. Duenas, M. Fernandez, S. Canete, J. Carretero, and E. Liger Stochastic model to forecast ground-level ozone concentration at urban and rural areas Chemosphere 61 2005 1379 1389
    • (2005) Chemosphere , vol.61 , pp. 1379-1389
    • Duenas, C.1    Fernandez, M.2    Canete, S.3    Carretero, J.4    Liger, E.5
  • 6
    • 79952246361 scopus 로고    scopus 로고
    • Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and SVM data classification
    • Y. Feng, W. Zhang, D. Sun, and L. Zhang Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and SVM data classification Atmos. Environ. 45 2011 1979 1985
    • (2011) Atmos. Environ. , vol.45 , pp. 1979-1985
    • Feng, Y.1    Zhang, W.2    Sun, D.3    Zhang, L.4
  • 7
    • 84900308360 scopus 로고    scopus 로고
    • Can artificial neural networks be used to predict the origin of ozone episodes?
    • T. Fontes, L. Silva, M. Silva, N. Barros, and A. Carvalho Can artificial neural networks be used to predict the origin of ozone episodes? Sci. Total Environ. 488-489 2014 197 207
    • (2014) Sci. Total Environ. , vol.488-489 , pp. 197-207
    • Fontes, T.1    Silva, L.2    Silva, M.3    Barros, N.4    Carvalho, A.5
  • 8
    • 84885399625 scopus 로고    scopus 로고
    • Ensemble statistical post-processing of the national air quality forecast capability: Enhancing ozone forecasts in Baltimore
    • G.G. Garner, and A.M. Thompson Ensemble statistical post-processing of the national air quality forecast capability: enhancing ozone forecasts in Baltimore Atmos. Environ. 81 2013 517 522
    • (2013) Atmos. Environ. , vol.81 , pp. 517-522
    • Garner, G.G.1    Thompson, A.M.2
  • 9
    • 34047160611 scopus 로고    scopus 로고
    • Fuzzy system models combined with nonlinear regression for daily ground-level ozone predictions
    • Y. Lin, and W.G. Cobourn Fuzzy system models combined with nonlinear regression for daily ground-level ozone predictions Atmos. Environ. 41 2007 3502 3513
    • (2007) Atmos. Environ. , vol.41 , pp. 3502-3513
    • Lin, Y.1    Cobourn, W.G.2
  • 10
    • 84874911486 scopus 로고    scopus 로고
    • Application of multiple linear regression models and artificial neural networks on the surface ozone forecast in the greater Athens area, Greece
    • K.P. Moustris, P.T. Nastos, I.K. Larissi, and A.G. Paliatsos Application of multiple linear regression models and artificial neural networks on the surface ozone forecast in the greater Athens area, Greece Adv. Meteorol. 2012 2012 1 8
    • (2012) Adv. Meteorol. , vol.2012 , pp. 1-8
    • Moustris, K.P.1    Nastos, P.T.2    Larissi, I.K.3    Paliatsos, A.G.4
  • 11
    • 84875931252 scopus 로고    scopus 로고
    • Ozone prediction based on meteorological variables: A fuzzy inductive reasoning approach
    • A. Nebot, V. Mugica, and A. Escobet Ozone prediction based on meteorological variables: a fuzzy inductive reasoning approach Atmos. Chem. Phys. Discuss. 8 2008 12343 12370
    • (2008) Atmos. Chem. Phys. Discuss. , vol.8 , pp. 12343-12370
    • Nebot, A.1    Mugica, V.2    Escobet, A.3
  • 12
    • 84875926322 scopus 로고    scopus 로고
    • Evolving Gaussian process models for the prediction of ozone concentration in the air
    • D. Petelin, A. Grancharova, and J. Kocijan Evolving Gaussian process models for the prediction of ozone concentration in the air Simulat. Model. Pract. Theory 33 1 2013 68 80
    • (2013) Simulat. Model. Pract. Theory , vol.33 , Issue.1 , pp. 68-80
    • Petelin, D.1    Grancharova, A.2    Kocijan, J.3
  • 14
    • 84897465984 scopus 로고    scopus 로고
    • A data-integrated simulation model to forecast ground-level ozone concentration
    • D. Sundaramoorthi A data-integrated simulation model to forecast ground-level ozone concentration Ann. Oper. Res. 216 2014 53 69
    • (2014) Ann. Oper. Res. , vol.216 , pp. 53-69
    • Sundaramoorthi, D.1
  • 16
    • 34247871316 scopus 로고    scopus 로고
    • Integrated effects of air pollution and climate change on forests: A northern hemisphere perspective
    • A. Bytnerowicz, K. Omasa, and E. Paoletti Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective Environ. Pollut. 147 3 2006 438 445
    • (2006) Environ. Pollut. , vol.147 , Issue.3 , pp. 438-445
    • Bytnerowicz, A.1    Omasa, K.2    Paoletti, E.3
  • 19
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A.L. Blum, and P. Langley Selection of relevant features and examples in machine learning Artif. Intell. 97 1997 245 271
    • (1997) Artif. Intell. , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 20
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon, and A. Elisseeff An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 21
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi, and G.H. John Wrappers for feature subset selection Artif. Intell. 97 1-2 1997 273 324
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 22
    • 13944275303 scopus 로고    scopus 로고
    • Regressor selection with the analysis of variance method
    • I. Lind, and L. Ljung Regressor selection with the analysis of variance method Automatica 41 2005 693 700
    • (2005) Automatica , vol.41 , pp. 693-700
    • Lind, I.1    Ljung, L.2
  • 23
  • 24
    • 50849124115 scopus 로고    scopus 로고
    • Measuring and testing dependence by correlation of distances
    • G.J. Szekely, M.L. Rizzo, and N.K. Bakirov Measuring and testing dependence by correlation of distances Ann. Stat. 35 6 2007 2769 2794
    • (2007) Ann. Stat. , vol.35 , Issue.6 , pp. 2769-2794
    • Szekely, G.J.1    Rizzo, M.L.2    Bakirov, N.K.3
  • 25
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • K. Torkkola Feature extraction by non-parametric mutual information maximization J. Mach. Learn. Res. 3 2003 1415 1438
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 26
    • 36148985016 scopus 로고    scopus 로고
    • Partial mutual information for coupling analysis of multivariate time series
    • S. Frenzel, and B. Pompe Partial mutual information for coupling analysis of multivariate time series Phys. Rev. Lett. 99 2007 204101-1 204101-4
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 2041011-2041014
    • Frenzel, S.1    Pompe, B.2
  • 27
    • 33845980222 scopus 로고    scopus 로고
    • Neural input selection - A fast model-based approach
    • K. Li, and J.-X. Peng Neural input selection - a fast model-based approach Neurocomputation 70 1 2007 762 769
    • (2007) Neurocomputation , vol.70 , Issue.1 , pp. 762-769
    • Li, K.1    Peng, J.-X.2
  • 28
    • 33750562314 scopus 로고    scopus 로고
    • Intelligent data engineering and automated learning
    • Springer (Chapter Genetic algorithms and sensitivity analysis applied to select inputs of a multi-layer perceptron for the prediction of air pollutant time-series)
    • H. Niska, M. Heikkinen, and M. Kolehmainen Intelligent data engineering and automated learning Lecture Notes in Computer Science vol. 4224 2006 Springer 224 231 (Chapter Genetic algorithms and sensitivity analysis applied to select inputs of a multi-layer perceptron for the prediction of air pollutant time-series)
    • (2006) Lecture Notes in Computer Science , vol.4224 , pp. 224-231
    • Niska, H.1    Heikkinen, M.2    Kolehmainen, M.3
  • 32
    • 34548046773 scopus 로고    scopus 로고
    • Application of Gaussian processes for black-box modelling of biosystems
    • K. Ažman, and J. Kocijan Application of Gaussian processes for black-box modelling of biosystems ISA Trans. 46 2007 443 457
    • (2007) ISA Trans. , vol.46 , pp. 443-457
    • Ažman, K.1    Kocijan, J.2
  • 34
    • 0003319647 scopus 로고    scopus 로고
    • Introduction to Gaussian processes
    • C.M. Bishop (Ed.), Neural Networks and Machine Learning, Kluwer
    • D.J.C. MacKay Introduction to Gaussian processes C.M. Bishop (Ed.), Neural Networks and Machine Learning, NATO ASI Series 1998 Kluwer 133 166
    • (1998) NATO ASI Series , pp. 133-166
    • MacKay, D.J.C.1
  • 35
    • 49549124024 scopus 로고    scopus 로고
    • Gas-liquid separator modelling and simulation with Gaussian-process models
    • J. Kocijan B. Likar Gas-liquid separator modelling and simulation with Gaussian-process models Simulat. Model. Pract. Theory 16 8 2008 910 922
    • (2008) Simulat. Model. Pract. Theory , vol.16 , Issue.8 , pp. 910-922
    • Kocijan, J.1    Likar, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.