메뉴 건너뛰기




Volumn , Issue , 2013, Pages 2834-2841

Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera

Author keywords

activity recognition; depth image; Kinect; Spatio temporal interest point

Indexed keywords

ACTIVITY RECOGNITION; CHOICE OF PARAMETERS; CLUTTERED BACKGROUNDS; DEPTH IMAGE; EXPERIMENTAL EVALUATION; KINECT; NOISY MEASUREMENTS; SPATIO-TEMPORAL INTEREST POINTS;

EID: 84887324355     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.365     Document Type: Conference Paper
Times cited : (407)

References (32)
  • 3
    • 79955702502 scopus 로고    scopus 로고
    • Libsvm: A library for support vector machines
    • C. Chang and C. Lin. Libsvm: a library for support vector machines. TIST, 2(3):27, 2011.
    • (2011) IntIST , vol.2 , Issue.3 , pp. 27
    • Chang, C.1    Lin, C.2
  • 5
    • 33846622081 scopus 로고    scopus 로고
    • Behavior recognition via sparse spatio-temporal features
    • P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse spatio-temporal features. In PETS, pages 65-72, 2005.
    • (2005) PETS , pp. 65-72
    • Dollár, P.1    Rabaud, V.2    Cottrell, G.3    Belongie, S.4
  • 6
    • 79957657206 scopus 로고    scopus 로고
    • Inside the race to hack the kinect
    • J. Goles. Inside the race to hack the kinect. New Scientist, 208(2789):22, 2010.
    • (2010) New Scientist , vol.208 , Issue.2789 , pp. 22
    • Goles, J.1
  • 8
    • 79952506455 scopus 로고    scopus 로고
    • Real-time human detection using relational depth similarity features
    • S. Ikemura and H. Fujiyoshi. Real-time human detection using relational depth similarity features. In ACCV 2010, pages 25-38.
    • ACCV 2010 , pp. 25-38
    • Ikemura, S.1    Fujiyoshi, H.2
  • 9
    • 77955839347 scopus 로고    scopus 로고
    • Highspeed 3d object recognition using additive features in a linear subspace
    • A. Kanezaki, H. Nakayama, T. Harada, and Y. Kuniyoshi. Highspeed 3d object recognition using additive features in a linear subspace. In ICRA, pages 3128-3134, 2010.
    • (2010) ICRA , pp. 3128-3134
    • Kanezaki, A.1    Nakayama, H.2    Harada, T.3    Kuniyoshi, Y.4
  • 10
    • 84898426452 scopus 로고    scopus 로고
    • A spatio-temporal descriptor based on 3d-gradients
    • A. Klaser and M. Marszalek. A spatio-temporal descriptor based on 3d-gradients. In BMVC, 2008.
    • (2008) BMVC
    • Klaser, A.1    Marszalek, M.2
  • 12
    • 51949083365 scopus 로고    scopus 로고
    • Learning realistic human actions from movies
    • I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions from movies. In CVPR, pages 1-8, 2008.
    • (2008) CVPR , pp. 1-8
    • Laptev, I.1    Marszalek, M.2    Schmid, C.3    Rozenfeld, B.4
  • 13
    • 77956552331 scopus 로고    scopus 로고
    • Action recognition based on a bag of 3d points
    • W. Li, Z. Zhang, and Z. Liu. Action recognition based on a bag of 3d points. CVPR Workshop,(5):9-14, 2010.
    • (2010) CVPR Workshop , Issue.5 , pp. 9-14
    • Li, W.1    Zhang, Z.2    Liu, Z.3
  • 14
    • 84863061964 scopus 로고    scopus 로고
    • Rgbd-hudaact: A color-depth video database for human daily activity recognition
    • B. Ni, G. Wang, and P. Moulin. Rgbd-hudaact: A color-depth video database for human daily activity recognition. In ICCV Workshop, pages 1147-1153, 2011.
    • (2011) ICCV Workshop , pp. 1147-1153
    • Ni, B.1    Wang, G.2    Moulin, P.3
  • 15
    • 45049084813 scopus 로고    scopus 로고
    • Unsupervised learning of human action categories using spatial-temporal words
    • J. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of human action categories using spatial-temporal words. IJCV, 79(3):299-318, 2008.
    • (2008) IJCV , vol.79 , Issue.3 , pp. 299-318
    • Niebles, J.1    Wang, H.2    Fei-Fei, L.3
  • 17
    • 33744958383 scopus 로고    scopus 로고
    • Integral histogram: A fast way to extract histograms in cartesian spaces
    • F. Porikli. Integral histogram: A fast way to extract histograms in cartesian spaces. In CVPR, volume 1, pages 829-836, 2005.
    • (2005) CVPR, Volume 1 , pp. 829-836
    • Porikli, F.1
  • 18
    • 85111089218 scopus 로고    scopus 로고
    • Fast point feature histograms (fpfh) for 3d registration
    • R. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms (fpfh) for 3d registration. In ICRA, pages 3212-3217, 2009.
    • (2009) ICRA , pp. 3212-3217
    • Rusu, R.1    Blodow, N.2    Beetz, M.3
  • 19
    • 78651518184 scopus 로고    scopus 로고
    • Fast 3d recognition and pose using the viewpoint feature histogram
    • R. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3d recognition and pose using the viewpoint feature histogram. In IROS, pages 2155-2162, 2010.
    • (2010) IROS , pp. 2155-2162
    • Rusu, R.1    Bradski, G.2    Thibaux, R.3    Hsu, J.4
  • 23
    • 84871704701 scopus 로고    scopus 로고
    • Interest point detection in depth images through scale-space surface analysis
    • J. Stuckler and S. Behnke. Interest point detection in depth images through scale-space surface analysis. In ICRA, pages 3568-3574, 2011.
    • (2011) ICRA , pp. 3568-3574
    • Stuckler, J.1    Behnke, S.2
  • 24
    • 0022718207 scopus 로고
    • Curvature-based representation of objects from range data
    • B. C. Vemuri, A. Mitiche, and J. K. Aggarwal. Curvature-based representation of objects from range data. Image and vision computing, 4(2):107-114, 1986.
    • (1986) Image and Vision Computing , vol.4 , Issue.2 , pp. 107-114
    • Vemuri, B.C.1    Mitiche, A.2    Aggarwal, J.K.3
  • 26
    • 84867857649 scopus 로고    scopus 로고
    • Robust 3d action recognition with random occupancy patterns
    • J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu. Robust 3d action recognition with random occupancy patterns. In ECCV, pages 872-885. 2012.
    • (2012) ECCV , pp. 872-885
    • Wang, J.1    Liu, Z.2    Chorowski, J.3    Chen, Z.4    Wu, Y.5
  • 27
    • 84866672692 scopus 로고    scopus 로고
    • Mining actionlet ensemble for action recognition with depth cameras
    • J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet ensemble for action recognition with depth cameras. In CVPR, pages 1290-1297, 2012.
    • (2012) CVPR , pp. 1290-1297
    • Wang, J.1    Liu, Z.2    Wu, Y.3    Yuan, J.4
  • 28
    • 56749155587 scopus 로고    scopus 로고
    • An efficient dense and scale-invariant spatio-temporal interest point detector
    • G. Willems, T. Tuytelaars, and L. Van Gool. An efficient dense and scale-invariant spatio-temporal interest point detector. In ECCV, pages 650-663, 2008.
    • (2008) ECCV , pp. 650-663
    • Willems, G.1    Tuytelaars, T.2    Van Gool, L.3
  • 29
    • 84865033379 scopus 로고    scopus 로고
    • View invariant human action recognition using histograms of 3d joints
    • L. Xia, C. Chen, and J. K. Aggarwal. View invariant human action recognition using histograms of 3d joints. In CVPR Workshop, pages 20-27, 2012.
    • (2012) CVPR Workshop , pp. 20-27
    • Xia, L.1    Chen, C.2    Aggarwal, J.K.3
  • 30
    • 84864968280 scopus 로고    scopus 로고
    • Eigenjoints-based action recognition using näve-bayes-nearest- neighbor
    • X. Yang and Y. Tian. Eigenjoints-based action recognition using näve-bayes-nearest-neighbor. In CVPRW, pages 14-19, 2012.
    • (2012) CVPRW , pp. 14-19
    • Yang, X.1    Tian, Y.2
  • 31
    • 84455207544 scopus 로고    scopus 로고
    • 4-dimensional local spatio-temporal features for human activity recognition
    • H. Zhang and L. Parker. 4-dimensional local spatio-temporal features for human activity recognition. In IROS, pages 2044-2049, 2011.
    • (2011) IROS , pp. 2044-2049
    • Zhang, H.1    Parker, L.2
  • 32
    • 84874442410 scopus 로고    scopus 로고
    • Combing rgb and depth map features for human activity recognition
    • Y. Zhao, Z. Liu, L. Yang, and H. Cheng. Combing rgb and depth map features for human activity recognition. In APSIPA ASC, pages 1-4, 2012.
    • (2012) APSIPA ASC , pp. 1-4
    • Zhao, Y.1    Liu, Z.2    Yang, L.3    Cheng, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.