메뉴 건너뛰기




Volumn , Issue , 2013, Pages 2688-2695

Learning maximum margin temporal warping for action recognition

Author keywords

Action Recognition; Depth Camera; Dynamic Temporal Warpping; Temporal Model

Indexed keywords

COMPUTER SCIENCE; COMPUTERS; ELECTRICAL ENGINEERING;

EID: 84898794902     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.334     Document Type: Conference Paper
Times cited : (66)

References (33)
  • 1
    • 84866678025 scopus 로고    scopus 로고
    • Three things everyone should know to improve object retrieval
    • R. Arandjelovic and A. Zisserman. Three things everyone should know to improve object retrieval. In CVPR, 2012.
    • (2012) In CVPR
    • Arandjelovic, R.1    Zisserman, A.2
  • 2
    • 84856661125 scopus 로고    scopus 로고
    • Learning spatiotemporal graphs of human activities
    • IEEE, Nov.
    • W. Brendel and S. Todorovic. Learning spatiotemporal graphs of human activities. In ICCV. Ieee, Nov. 2011.
    • (2011) In ICCV
    • Brendel, W.1    Todorovic, S.2
  • 3
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • IEEE
    • N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In CVPR, pages 886-893. IEEE, 2005.
    • (2005) In CVPR , pp. 886-893
    • Dalal, N.1    Triggs, B.2
  • 4
    • 84867136666 scopus 로고    scopus 로고
    • Querying and mining of time series data: Experimental comparison of representations and distance measures
    • H. Ding, G. Trajcevski, and P. Scheuermann. Querying and mining of time series data: experimental comparison of representations and distance measures. In PVLDB, volume 1, 2008.
    • (2008) In PVLDB , vol.1
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3
  • 5
    • 80052915321 scopus 로고    scopus 로고
    • Actom sequence models for efficient action detection
    • A. Gaidon, C. Schmid, and L. I. Grenoble. Actom Sequence Models for Efficient Action Detection. In CVPR, 2011.
    • (2011) In CVPR
    • Gaidon, A.1    Schmid, C.2    Grenoble, L.I.3
  • 6
    • 84866664428 scopus 로고    scopus 로고
    • Max-margin early event detectors
    • IEEE, June
    • M. Hoai and F. De la Torre. Max-margin early event detectors. In CVPR, pages 2863-2870. Ieee, June 2012.
    • (2012) In CVPR , pp. 2863-2870
    • Hoai, M.1    De La Torre, F.2
  • 7
    • 77955993558 scopus 로고    scopus 로고
    • Learning a hierarchy of discriminative spacetime neighborhood features for human action recognition
    • A. Kovashka and K. Grauman. Learning a hierarchy of discriminative spacetime neighborhood features for human action recognition. In CVPR, pages 2046-2053, 2010.
    • (2010) In CVPR , pp. 2046-2053
    • Kovashka, A.1    Grauman, K.2
  • 8
    • 51949083365 scopus 로고    scopus 로고
    • Learning realistic human actions from movies
    • I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions from movies. In CVPR, volume 1, pages 1-8, 2008.
    • (2008) In CVPR , vol.1 , pp. 1-8
    • Laptev, I.1    Marszalek, M.2    Schmid, C.3    Rozenfeld, B.4
  • 9
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical invariant spatiotemporal features for action recognition with independent subspace analysis
    • Q. Le, W. Zou, S. Yeung, and A. Ng. Learning hierarchical invariant spatiotemporal features for action recognition with independent subspace analysis. In CVPR, 2011.
    • (2011) In CVPR
    • Le, Q.1    Zou, W.2    Yeung, S.3    Ng, A.4
  • 10
    • 84867839897 scopus 로고    scopus 로고
    • Modeling Complex Temporal Composition of Actionlets for Activity Prediction
    • K. Li, J. Hu, and Y. Fu. Modeling Complex Temporal Composition of Actionlets for Activity Prediction. In ECCV, pages 286-299, 2012.
    • (2012) In ECCV , pp. 286-299
    • Li, K.1    Hu, J.2    Fu, Y.3
  • 12
    • 33745834282 scopus 로고    scopus 로고
    • Recognition and segmentation of 3-D human action using HMM and multi-class adaboost
    • F. Lv and R. Nevatia. Recognition and Segmentation of 3-D Human Action Using HMM and Multi-class AdaBoost. In ECCV, pages 359-372, 2006.
    • (2006) In ECCV , pp. 359-372
    • Lv, F.1    Nevatia, R.2
  • 13
    • 84898811992 scopus 로고    scopus 로고
    • Maximum margin temporal clustering
    • Minh Hoai and F. D. Torre. Maximum Margin Temporal Clustering. In ICML, volume XX, 2012.
    • (2012) In ICML , vol.20
    • Hoai, M.1    Torre, F.D.2
  • 15
    • 80052874353 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segments for activity classification
    • J. C. Niebles, C.-w. Chen, and L. Fei-fei. Modeling Temporal Structure of Decomposable Motion Segments for Activity Classification. In ECCV, pages 1-14, 2010.
    • (2010) In ECCV , pp. 1-14
    • Niebles, J.C.1    Chen, C.-W.2    Fei-Fei, L.3
  • 16
    • 84887375927 scopus 로고    scopus 로고
    • HON4D : Histogram of oriented 4D normals for activity recognition from depth sequences
    • O. Oreifej and Z. Liu. HON4D : Histogram of Oriented 4D Normals for Activity Recognition from Depth Sequences. In CVPR, 2013.
    • (2013) In CVPR
    • Oreifej, O.1    Liu, Z.2
  • 17
    • 84856646751 scopus 로고    scopus 로고
    • Parsing video events with goal inference and intent prediction
    • M. Pei, Y. Jia, and S.-c. Zhu. Parsing Video Events with Goal inference and Intent Prediction. In ICCV, 2011.
    • (2011) In ICCV
    • Pei, M.1    Jia, Y.2    Zhu, S.-C.3
  • 18
    • 51949084792 scopus 로고    scopus 로고
    • Action MACH:a spatio-temporal maximum average correlation height filter for action recognition
    • IEEE, June
    • M. D. Rodriguez, J. Ahmed, and M. Shah. Action MACH:a spatio-temporal Maximum Average Correlation Height filter for action recognition. In CVPR, pages 1-8. Ieee, June 2008.
    • (2008) In CVPR , pp. 1-8
    • Rodriguez, M.D.1    Ahmed, J.2    Shah, M.3
  • 19
    • 84866718894 scopus 로고    scopus 로고
    • Action bank: A high-level representation of activity in video
    • number May
    • S. Sadanand and J. Corso. Action bank: A high-level representation of activity in video. In CVPR, number May, 2012.
    • (2012) In CVPR
    • Sadanand, S.1    Corso, J.2
  • 22
    • 84866658784 scopus 로고    scopus 로고
    • Learning latent temporal structure for complex event detection
    • IEEE, June 2012
    • K. Tang and D. Koller. Learning latent temporal structure for complex event detection. In CVPR, pages 1250-1257. Ieee, June 2012.
    • In CVPR , pp. 1250-1257
    • Tang, K.1    Koller, D.2
  • 23
    • 84877744900 scopus 로고    scopus 로고
    • Max-Margin Structured Output Regression for Spatio-Temporal Action Localization
    • D. Tran and J. Yuan. Max-Margin Structured Output Regression for Spatio-Temporal Action Localization. In NIPS, 2012.
    • (2012) In NIPS
    • Tran, D.1    Yuan, J.2
  • 24
    • 84898890371 scopus 로고    scopus 로고
    • Evaluation of local spatio-temporal features for action recognition
    • British Machine Vision Association
    • H.Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid. Evaluation of local spatio-temporal features for action recognition. In BMVC. British Machine Vision Association, 2009.
    • (2009) In BMVC
    • Wang, H.1    Ullah, M.M.2    Klaser, A.3    Laptev, I.4    Schmid, C.5
  • 25
    • 84871393884 scopus 로고    scopus 로고
    • Robust 3D action recognition with random occupancy patterns
    • J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu. Robust 3D Action Recognition with Random Occupancy Patterns. In ECCV, pages 1-14, 2012.
    • (2012) In ECCV , pp. 1-14
    • Wang, J.1    Liu, Z.2    Chorowski, J.3    Chen, Z.4    Wu, Y.5
  • 26
    • 84866672692 scopus 로고    scopus 로고
    • Mining actionlet ensemble for action recognition with depth cameras
    • J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining Actionlet Ensemble for Action Recognition with Depth Cameras. In CVPR, 2012.
    • (2012) In CVPR
    • Wang, J.1    Liu, Z.2    Wu, Y.3    Yuan, J.4
  • 27
    • 80052908096 scopus 로고    scopus 로고
    • Action recognition using context and appearance distribution features
    • IEEE, June
    • X. Wu, D. Xu, L. Duan, and J. Luo. Action recognition using context and appearance distribution features. In CVPR. Ieee, June 2011.
    • (2011) In CVPR
    • Wu, X.1    Xu, D.2    Duan, L.3    Luo, J.4
  • 28
    • 84865033379 scopus 로고    scopus 로고
    • View invariant human action recognition using histograms of 3D joints
    • The University of Texas at Austin HAU3D Workshop
    • L. Xia, C.-c. Chen, and J. K. Aggarwal. View Invariant Human Action Recognition Using Histograms of 3D Joints The University of Texas at Austin. In CVPR 2012 HAU3D Workshop.
    • (2012) In CVPR
    • Xia, L.1    Chen, C.-C.2    Aggarwal, J.K.3
  • 29
    • 33644522380 scopus 로고    scopus 로고
    • Beyond tracking: Modelling activity and understanding behaviour
    • Apr.
    • T. Xiang and S. Gong. Beyond Tracking: Modelling Activity and Understanding Behaviour. International Journal of Computer Vision, 67(1):21-51, Apr. 2006.
    • (2006) International Journal of Computer Vision , vol.67 , Issue.1 , pp. 21-51
    • Xiang, T.1    Gong, S.2
  • 30
    • 84864968280 scopus 로고    scopus 로고
    • EigenJoints-based action recognition using nave-bayes-nearest-neighbor
    • X. Yang and Y. Tian. EigenJoints-based Action Recognition Using nave-Bayes-Nearest-Neighbor. In CVPR 2012 HAU3D Workshop, 2012.
    • (2012) In CVPR 2012 HAU3D Workshop
    • Yang, X.1    Tian, Y.2
  • 31
    • 84871394796 scopus 로고    scopus 로고
    • Recognizing actions using depth motion maps-based histograms of oriented gradients
    • X. Yang, C. Zhang, and Y. Tian. Recognizing Actions Using Depth Motion Maps-based Histograms of Oriented Gradients. In ACM Multimedia, 2012.
    • (2012) ACM Multimedia
    • Yang, X.1    Zhang, C.2    Tian, Y.3
  • 32
    • 77953218032 scopus 로고    scopus 로고
    • Learning deformable action templates from cluttered videos
    • IEEE, Sept.
    • B. Yao and S.-C. Zhu. Learning deformable action templates from cluttered videos. In ICCV, pages 1507-1514. IEEE, Sept. 2009.
    • (2009) In ICCV , pp. 1507-1514
    • Yao, B.1    Zhu, S.-C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.