-
1
-
-
84866678025
-
Three things everyone should know to improve object retrieval
-
R. Arandjelovic and A. Zisserman. Three things everyone should know to improve object retrieval. In CVPR, 2012.
-
(2012)
In CVPR
-
-
Arandjelovic, R.1
Zisserman, A.2
-
2
-
-
84856661125
-
Learning spatiotemporal graphs of human activities
-
IEEE, Nov.
-
W. Brendel and S. Todorovic. Learning spatiotemporal graphs of human activities. In ICCV. Ieee, Nov. 2011.
-
(2011)
In ICCV
-
-
Brendel, W.1
Todorovic, S.2
-
3
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
IEEE
-
N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In CVPR, pages 886-893. IEEE, 2005.
-
(2005)
In CVPR
, pp. 886-893
-
-
Dalal, N.1
Triggs, B.2
-
4
-
-
84867136666
-
Querying and mining of time series data: Experimental comparison of representations and distance measures
-
H. Ding, G. Trajcevski, and P. Scheuermann. Querying and mining of time series data: experimental comparison of representations and distance measures. In PVLDB, volume 1, 2008.
-
(2008)
In PVLDB
, vol.1
-
-
Ding, H.1
Trajcevski, G.2
Scheuermann, P.3
-
5
-
-
80052915321
-
Actom sequence models for efficient action detection
-
A. Gaidon, C. Schmid, and L. I. Grenoble. Actom Sequence Models for Efficient Action Detection. In CVPR, 2011.
-
(2011)
In CVPR
-
-
Gaidon, A.1
Schmid, C.2
Grenoble, L.I.3
-
6
-
-
84866664428
-
Max-margin early event detectors
-
IEEE, June
-
M. Hoai and F. De la Torre. Max-margin early event detectors. In CVPR, pages 2863-2870. Ieee, June 2012.
-
(2012)
In CVPR
, pp. 2863-2870
-
-
Hoai, M.1
De La Torre, F.2
-
7
-
-
77955993558
-
Learning a hierarchy of discriminative spacetime neighborhood features for human action recognition
-
A. Kovashka and K. Grauman. Learning a hierarchy of discriminative spacetime neighborhood features for human action recognition. In CVPR, pages 2046-2053, 2010.
-
(2010)
In CVPR
, pp. 2046-2053
-
-
Kovashka, A.1
Grauman, K.2
-
8
-
-
51949083365
-
Learning realistic human actions from movies
-
I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions from movies. In CVPR, volume 1, pages 1-8, 2008.
-
(2008)
In CVPR
, vol.1
, pp. 1-8
-
-
Laptev, I.1
Marszalek, M.2
Schmid, C.3
Rozenfeld, B.4
-
9
-
-
80052874098
-
Learning hierarchical invariant spatiotemporal features for action recognition with independent subspace analysis
-
Q. Le, W. Zou, S. Yeung, and A. Ng. Learning hierarchical invariant spatiotemporal features for action recognition with independent subspace analysis. In CVPR, 2011.
-
(2011)
In CVPR
-
-
Le, Q.1
Zou, W.2
Yeung, S.3
Ng, A.4
-
10
-
-
84867839897
-
Modeling Complex Temporal Composition of Actionlets for Activity Prediction
-
K. Li, J. Hu, and Y. Fu. Modeling Complex Temporal Composition of Actionlets for Activity Prediction. In ECCV, pages 286-299, 2012.
-
(2012)
In ECCV
, pp. 286-299
-
-
Li, K.1
Hu, J.2
Fu, Y.3
-
12
-
-
33745834282
-
Recognition and segmentation of 3-D human action using HMM and multi-class adaboost
-
F. Lv and R. Nevatia. Recognition and Segmentation of 3-D Human Action Using HMM and Multi-class AdaBoost. In ECCV, pages 359-372, 2006.
-
(2006)
In ECCV
, pp. 359-372
-
-
Lv, F.1
Nevatia, R.2
-
13
-
-
84898811992
-
Maximum margin temporal clustering
-
Minh Hoai and F. D. Torre. Maximum Margin Temporal Clustering. In ICML, volume XX, 2012.
-
(2012)
In ICML
, vol.20
-
-
Hoai, M.1
Torre, F.D.2
-
15
-
-
80052874353
-
Modeling temporal structure of decomposable motion segments for activity classification
-
J. C. Niebles, C.-w. Chen, and L. Fei-fei. Modeling Temporal Structure of Decomposable Motion Segments for Activity Classification. In ECCV, pages 1-14, 2010.
-
(2010)
In ECCV
, pp. 1-14
-
-
Niebles, J.C.1
Chen, C.-W.2
Fei-Fei, L.3
-
16
-
-
84887375927
-
HON4D : Histogram of oriented 4D normals for activity recognition from depth sequences
-
O. Oreifej and Z. Liu. HON4D : Histogram of Oriented 4D Normals for Activity Recognition from Depth Sequences. In CVPR, 2013.
-
(2013)
In CVPR
-
-
Oreifej, O.1
Liu, Z.2
-
17
-
-
84856646751
-
Parsing video events with goal inference and intent prediction
-
M. Pei, Y. Jia, and S.-c. Zhu. Parsing Video Events with Goal inference and Intent Prediction. In ICCV, 2011.
-
(2011)
In ICCV
-
-
Pei, M.1
Jia, Y.2
Zhu, S.-C.3
-
18
-
-
51949084792
-
Action MACH:a spatio-temporal maximum average correlation height filter for action recognition
-
IEEE, June
-
M. D. Rodriguez, J. Ahmed, and M. Shah. Action MACH:a spatio-temporal Maximum Average Correlation Height filter for action recognition. In CVPR, pages 1-8. Ieee, June 2008.
-
(2008)
In CVPR
, pp. 1-8
-
-
Rodriguez, M.D.1
Ahmed, J.2
Shah, M.3
-
19
-
-
84866718894
-
Action bank: A high-level representation of activity in video
-
number May
-
S. Sadanand and J. Corso. Action bank: A high-level representation of activity in video. In CVPR, number May, 2012.
-
(2012)
In CVPR
-
-
Sadanand, S.1
Corso, J.2
-
20
-
-
80052878786
-
Real-time human pose recognition in parts from single depth images
-
J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake. Real-time human pose recognition in parts from single depth images. In CVPR, 2011.
-
(2011)
In CVPR
-
-
Shotton, J.1
Fitzgibbon, A.2
Cook, M.3
Sharp, T.4
Finocchio, M.5
Moore, R.6
Kipman, A.7
Blake, A.8
-
22
-
-
84866658784
-
Learning latent temporal structure for complex event detection
-
IEEE, June 2012
-
K. Tang and D. Koller. Learning latent temporal structure for complex event detection. In CVPR, pages 1250-1257. Ieee, June 2012.
-
In CVPR
, pp. 1250-1257
-
-
Tang, K.1
Koller, D.2
-
23
-
-
84877744900
-
Max-Margin Structured Output Regression for Spatio-Temporal Action Localization
-
D. Tran and J. Yuan. Max-Margin Structured Output Regression for Spatio-Temporal Action Localization. In NIPS, 2012.
-
(2012)
In NIPS
-
-
Tran, D.1
Yuan, J.2
-
24
-
-
84898890371
-
Evaluation of local spatio-temporal features for action recognition
-
British Machine Vision Association
-
H.Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid. Evaluation of local spatio-temporal features for action recognition. In BMVC. British Machine Vision Association, 2009.
-
(2009)
In BMVC
-
-
Wang, H.1
Ullah, M.M.2
Klaser, A.3
Laptev, I.4
Schmid, C.5
-
25
-
-
84871393884
-
Robust 3D action recognition with random occupancy patterns
-
J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu. Robust 3D Action Recognition with Random Occupancy Patterns. In ECCV, pages 1-14, 2012.
-
(2012)
In ECCV
, pp. 1-14
-
-
Wang, J.1
Liu, Z.2
Chorowski, J.3
Chen, Z.4
Wu, Y.5
-
26
-
-
84866672692
-
Mining actionlet ensemble for action recognition with depth cameras
-
J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining Actionlet Ensemble for Action Recognition with Depth Cameras. In CVPR, 2012.
-
(2012)
In CVPR
-
-
Wang, J.1
Liu, Z.2
Wu, Y.3
Yuan, J.4
-
27
-
-
80052908096
-
Action recognition using context and appearance distribution features
-
IEEE, June
-
X. Wu, D. Xu, L. Duan, and J. Luo. Action recognition using context and appearance distribution features. In CVPR. Ieee, June 2011.
-
(2011)
In CVPR
-
-
Wu, X.1
Xu, D.2
Duan, L.3
Luo, J.4
-
28
-
-
84865033379
-
View invariant human action recognition using histograms of 3D joints
-
The University of Texas at Austin HAU3D Workshop
-
L. Xia, C.-c. Chen, and J. K. Aggarwal. View Invariant Human Action Recognition Using Histograms of 3D Joints The University of Texas at Austin. In CVPR 2012 HAU3D Workshop.
-
(2012)
In CVPR
-
-
Xia, L.1
Chen, C.-C.2
Aggarwal, J.K.3
-
29
-
-
33644522380
-
Beyond tracking: Modelling activity and understanding behaviour
-
Apr.
-
T. Xiang and S. Gong. Beyond Tracking: Modelling Activity and Understanding Behaviour. International Journal of Computer Vision, 67(1):21-51, Apr. 2006.
-
(2006)
International Journal of Computer Vision
, vol.67
, Issue.1
, pp. 21-51
-
-
Xiang, T.1
Gong, S.2
-
30
-
-
84864968280
-
EigenJoints-based action recognition using nave-bayes-nearest-neighbor
-
X. Yang and Y. Tian. EigenJoints-based Action Recognition Using nave-Bayes-Nearest-Neighbor. In CVPR 2012 HAU3D Workshop, 2012.
-
(2012)
In CVPR 2012 HAU3D Workshop
-
-
Yang, X.1
Tian, Y.2
-
31
-
-
84871394796
-
Recognizing actions using depth motion maps-based histograms of oriented gradients
-
X. Yang, C. Zhang, and Y. Tian. Recognizing Actions Using Depth Motion Maps-based Histograms of Oriented Gradients. In ACM Multimedia, 2012.
-
(2012)
ACM Multimedia
-
-
Yang, X.1
Zhang, C.2
Tian, Y.3
-
32
-
-
77953218032
-
Learning deformable action templates from cluttered videos
-
IEEE, Sept.
-
B. Yao and S.-C. Zhu. Learning deformable action templates from cluttered videos. In ICCV, pages 1507-1514. IEEE, Sept. 2009.
-
(2009)
In ICCV
, pp. 1507-1514
-
-
Yao, B.1
Zhu, S.-C.2
|