-
2
-
-
20844435854
-
Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
-
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.6
, pp. 734-749
-
-
Adomavicius, G.1
Tuzhilin, A.2
-
5
-
-
33749242994
-
-
ACMNew York, NY, USA, DOI
-
Balcan, M.F., Beygelzimer, A., Langford, J.: Agnostic active learning. In: ICML ’06: Proceedings of the 23rd international conference on Machine learning, pp. 65–72. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1143844.1143853
-
(2006)
Agnostic Active Learning. In: ICML ’06: Proceedings of the 23Rd International Conference on Machine Learning
, pp. 65-72
-
-
Balcan, M.F.1
Beygelzimer, A.2
Langford, J.3
-
6
-
-
33750717265
-
Active collaborative filtering
-
URL citeseer.ist.psu.edu/boutilier03active.html
-
Boutilier, C., Zemel, R., Marlin, B.: Active collaborative filtering. In: Proceedings of the Nineteenth Annual Conference on Uncertainty in Artificial Intelligence, pp. 98–106 (2003). URL citeseer.ist.psu.edu/boutilier03active.html
-
(2003)
Proceedings of the Nineteenth Annual Conference on Uncertainty in Artificial Intelligence
, pp. 98-106
-
-
Boutilier, C.1
Zemel, R.2
Marlin, B.3
-
7
-
-
0004074760
-
-
Design, Innovation, and Discovery. Wiley-Interscience
-
Box, G., Hunter, S.J., Hunter, W.G.: Statistics for Experimenters: Design, Innovation, and Discovery. Wiley-Interscience (2005)
-
(2005)
Statistics for Experimenters
-
-
Box, G.1
Hunter, S.J.2
Hunter, W.G.3
-
9
-
-
42149185649
-
Supporting product selection with query editing recommendations
-
ACM, New York, NY, USA, DOI
-
Bridge, D., Ricci, F.: Supporting product selection with query editing recommendations. In: RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems, pp. 65–72. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1297231.1297243
-
(2007)
In: Recsys ’07: Proceedings of the 2007 ACM Conference on Recommender Systems
, pp. 65-72
-
-
Bridge, D.1
Ricci, F.2
-
10
-
-
78649917865
-
Evaluating the dynamic properties of recommendation algorithms
-
ACM, New York, NY, USA
-
Burke, R.: Evaluating the dynamic properties of recommendation algorithms. In: Proceedings of the fourth ACM conference on Recommender systems, RecSys ’10, pp. 225–228. ACM, New York, NY, USA (2010). URL http://doi.acm.org/10.1145/1864708.1864753
-
(2010)
Proceedings of the Fourth ACM Conference on Recommender Systems, Recsys ’10
, pp. 225-228
-
-
Burke, R.1
-
11
-
-
0038043951
-
Towards more conversational and collaborative recommender systems
-
ACM, New York, NY, USA
-
Carenini, G., Smith, J., Poole, D.: Towards more conversational and collaborative recommender systems. In: IUI ’03: Proceedings of the 8th international conference on Intelligent user interfaces, pp. 12–18. ACM, New York, NY, USA (2003). DOI http://doi.acm.org/10.1145/604045.604052
-
(2003)
IUI ’03: Proceedings of the 8Th International Conference on Intelligent User Interfaces
, pp. 12-18
-
-
Carenini, G.1
Smith, J.2
Poole, D.3
-
12
-
-
85032543687
-
A-optimality for regression designs. Tech. Rep, Stanford University
-
Chan, N.: A-optimality for regression designs. Tech. rep., Stanford University, Department of Statistics (1981)
-
(1981)
Department of Statistics
-
-
Chan, N.1
-
14
-
-
0029679131
-
Active learning with statistical models
-
Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models. Journal of Artificial Intelligence Research 4, 129–145 (1996)
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 129-145
-
-
Cohn, D.A.1
Ghahramani, Z.2
Jordan, M.I.3
-
16
-
-
34547875776
-
Choosing where to look next in a mutation sequence space: Active learning of informative p53 cancer rescue mutants
-
Danziger, S., Zeng, J., Wang, Y., Brachmann, R., Lathrop, R.: Choosing where to look next in a mutation sequence space: Active learning of informative p53 cancer rescue mutants. Bioinformatics 23(13), 104–114 (2007)
-
(2007)
Bioinformatics
, vol.23
, Issue.13
, pp. 104-114
-
-
Danziger, S.1
Zeng, J.2
Wang, Y.3
Brachmann, R.4
Lathrop, R.5
-
17
-
-
0038290328
-
-
citeseer.ist.psu.edu/dasgupta02theoretical. html
-
Dasgupta, S., Lee, W., Long, P.: A theoretical analysis of query selection for collaborative filtering. Machine Learning 51, 283–298 (2003). URL citeseer.ist.psu.edu/dasgupta02theoretical. html
-
(2003)
A Theoretical Analysis of Query Selection for Collaborative Filtering. Machine Learning
, vol.51
, pp. 283-298
-
-
Dasgupta, S.1
Lee, W.2
Long, P.3
-
18
-
-
84867345632
-
Real-time top-n recommendation in social streams
-
ACM, New York, NY, USA
-
Diaz-Aviles, E., Drumond, L., Schmidt-Thieme, L., Nejdl, W.: Real-time top-n recommendation in social streams. In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ’12, pp. 59–66. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2365968. URL http://doi.acm.org/10.1145/2365952.2365968
-
(2012)
Proceedings of the Sixth ACM Conference on Recommender Systems, Recsys ’12
, pp. 59-66
-
-
Diaz-Aviles, E.1
Drumond, L.2
Schmidt-Thieme, L.3
Nejdl, W.4
-
19
-
-
79960287505
-
Adaptive active learning in recommender systems
-
UMAP 2011, Girona, Spain, July 11–15, 2011. Proceedings
-
Elahi, M.: Adaptive active learning in recommender systems. In: User Modeling, Adaption and Personalization—19th International Conference, UMAP 2011, Girona, Spain, July 11–15, 2011. Proceedings, pp. 414–417 (2011)
-
(2011)
User Modeling, Adaption and Personalization—19th International Conference
, pp. 414-417
-
-
Elahi, M.1
-
20
-
-
84891751057
-
Active learning strategies for rating elicitation in collaborative filtering: A system-wide perspective
-
Elahi, M., Ricci, F., Rubens, N.: Active learning strategies for rating elicitation in collaborative filtering: a system-wide perspective. ACMTransactions on Intelligent Systems and Technology 5(11) (2013)
-
(2013)
Acmtransactions on Intelligent Systems and Technology
, vol.5
, Issue.11
-
-
Elahi, M.1
Ricci, F.2
Rubens, N.3
-
21
-
-
63449090301
-
Learning on the border: Active learning in imbalanced data classification
-
ACM
-
Ertekin, S., Huang, J., Bottou, L., Giles, L.: Learning on the border: active learning in imbalanced data classification. In: Proceedings of the sixteenth ACM conference on Conference on information and knowledge management, pp. 127–136. ACM (2007)
-
(2007)
Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management
, pp. 127-136
-
-
Ertekin, S.1
Huang, J.2
Bottou, L.3
Giles, L.4
-
22
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences 55(1), 119–139 (1997)
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
23
-
-
0000012198
-
Selective sampling for example-based word sense disambiguation
-
Fujii, A., Tokunaga, T., Inui, K., Tanaka, H.: Selective sampling for example-based word sense disambiguation. Computational Linguistics 24, 24 (1998)
-
(1998)
Computational Linguistics
, vol.24
, pp. 24
-
-
Fujii, A.1
Tokunaga, T.2
Inui, K.3
Tanaka, H.4
-
24
-
-
0036680338
-
Learning cost-sensitive active classifiers
-
Greiner, R., Grove, A., Roth, D.: Learning cost-sensitive active classifiers. Artificial Intelligence 139, 137–174 (2002)
-
(2002)
Artificial Intelligence
, vol.139
, pp. 137-174
-
-
Greiner, R.1
Grove, A.2
Roth, D.3
-
25
-
-
57349112337
-
-
ACM, New York, NY, USA, DOI
-
Harpale, A.S., Yang, Y.: Personalized active learning for collaborative filtering. In: SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, pp. 91–98. ACM, New York, NY, USA (2008). DOI http://doi.acm.org/10.1145/1390334.1390352
-
(2008)
Personalized Active Learning for Collaborative Filtering. In: SIGIR ’08: Proceedings of the 31St Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 91-98
-
-
Harpale, A.S.1
Yang, Y.2
-
26
-
-
85015559680
-
An algorithmic framework for performing collaborative filtering
-
ACM, New York, NY, USA
-
Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR ’99, pp. 230–237. ACM, New York, NY, USA (1999). URL http://doi.acm.org/10.1145/312624.312682
-
(1999)
Proceedings of the 22Nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’99
, pp. 230-237
-
-
Herlocker, J.L.1
Konstan, J.A.2
Borchers, A.3
Riedl, J.4
-
27
-
-
3042697346
-
Evaluating collaborative filtering recommender systems
-
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004). DOI http://doi.acm.org/10.1145/963770.963772
-
(2004)
ACM Trans. Inf. Syst
, vol.22
, Issue.1
, pp. 5-53
-
-
Herlocker, J.L.1
Konstan, J.A.2
Terveen, L.G.3
Riedl, J.T.4
-
29
-
-
1542377533
-
Collaborative filtering via gaussian probabilistic latent semantic analysis
-
ACM, New York, NY, USA, DOI
-
Hofmann, T.: Collaborative filtering via gaussian probabilistic latent semantic analysis. In: SIGIR ’03: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, pp. 259–266. ACM, New York, NY, USA (2003). DOI http://doi.acm.org/10.1145/860435.860483
-
(2003)
SIGIR ’03: Proceedings of the 26Th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval
, pp. 259-266
-
-
Hofmann, T.1
-
30
-
-
36849010669
-
Selectively acquiring ratings for product recommendation
-
ACM, New York, NY, USA, DOI
-
Huang, Z.: Selectively acquiring ratings for product recommendation. In: ICEC ’07: Proceedings of the ninth international conference on Electronic commerce, pp. 379–388. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1282100.1282171
-
(2007)
In: ICEC ’07: Proceedings of the Ninth International Conference on Electronic Commerce
, pp. 379-388
-
-
Huang, Z.1
-
31
-
-
34748918427
-
A bayesian approach toward active learning for collaborative filtering
-
AUAI Press, Arlington, Virginia, United States
-
Jin, R., Si, L.: A bayesian approach toward active learning for collaborative filtering. In: AUAI ’04: Proceedings of the 20th conference on Uncertainty in artificial intelligence, pp. 278–285. AUAI Press, Arlington, Virginia, United States (2004)
-
(2004)
AUAI ’04: Proceedings of the 20Th Conference on Uncertainty in Artificial Intelligence
, pp. 278-285
-
-
Jin, R.1
Si, L.2
-
32
-
-
84903886850
-
Selling vs. Profiling: Optimizing the offer set in web-based personalization
-
Johar, M., Mookerjee, V., Sarkar, S.: Selling vs. profiling: Optimizing the offer set in web-based personalization. Information Systems Research 25(2), 285–306 (2014).
-
(2014)
Information Systems Research
, vol.25
, Issue.2
, pp. 285-306
-
-
Johar, M.1
Mookerjee, V.2
Sarkar, S.3
-
33
-
-
0016474029
-
D-optimality for regression designs: A review
-
John, R.C.S., Draper, N.R.: D-optimality for regression designs: A review. Technometrics 17(1), 15–23 (1975)
-
(1975)
Technometrics
, vol.17
, Issue.1
, pp. 15-23
-
-
John, R.1
Draper, N.R.2
-
35
-
-
78651463011
-
Selective supervision: Guiding supervised learning with decision-theoretic active learning
-
Kapoor, A., Horvitz, E., Basu, S.: Selective supervision: Guiding supervised learning with decision-theoretic active learning. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 877–882 (2007)
-
(2007)
Proceedings of International Joint Conference on Artificial Intelligence (IJCAI)
, pp. 877-882
-
-
Kapoor, A.1
Horvitz, E.2
Basu, S.3
-
36
-
-
84867366676
-
Exploiting the characteristics of matrix factorization for active learning in recommender systems
-
ACM, New York, NY, USA
-
Karimi, R., Freudenthaler, C., Nanopoulos, A., Schmidt-Thieme, L.: Exploiting the characteristics of matrix factorization for active learning in recommender systems. In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ’12, pp. 317–320. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2366031. URL http://doi.acm.org/10.1145/2365952.2366031
-
(2012)
In: Proceedings of the Sixth ACM Conference on Recommender Systems, Recsys ’12
, pp. 317-320
-
-
Karimi, R.1
Freudenthaler, C.2
Nanopoulos, A.3
Schmidt-Thieme, L.4
-
38
-
-
79952162073
-
Active learning for co-clustering based collaborative filtering
-
Le, Q.T., Tu, M.P.: Active learning for co-clustering based collaborative filtering. In: Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), 2010 IEEE RIVF International Conference on, pp. 1–4 (2010). DOI 10.1109/RIVF.2010.5633245
-
(2010)
In: Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), 2010 IEEE RIVF International Conference On
, pp. 1-4
-
-
Le, Q.T.1
Tu, M.P.2
-
39
-
-
42149180567
-
Case amazon: Ratings and reviews as part of recommendations
-
ACM, New York, NY, USA, DOI
-
Leino, J., Räihä, K.J.: Case amazon: ratings and reviews as part of recommendations. In: Rec- Sys ’07: Proceedings of the 2007 ACM conference on Recommender systems, pp. 137–140. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1297231.1297255
-
(2007)
In: Rec- Sys ’07: Proceedings of the 2007 ACM Conference on Recommender Systems
, pp. 137-140
-
-
Leino, J.1
Räihä, K.J.2
-
40
-
-
85013923864
-
Active class selection
-
Lomasky, R., Brodley, C., Aernecke, M., Walt, D., Friedl, M.: Active class selection. In: In Proceedings of the European Conference on Machine Learning (ECML). Springer (2007)
-
(2007)
In Proceedings of the European Conference on Machine Learning (ECML). Springer
-
-
Lomasky, R.1
Brodley, C.2
Aernecke, M.3
Walt, D.4
Friedl, M.5
-
41
-
-
0000314722
-
Employing em and pool-based active learning for text classification
-
San Francisco, CA, USA
-
McCallum, A., Nigam, K.: Employing em and pool-based active learning for text classification. In: ICML ’98: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 350–358. San Francisco, CA, USA (1998)
-
(1998)
ICML ’98: Proceedings of the Fifteenth International Conference on Machine Learning
, pp. 350-358
-
-
McCallum, A.1
Nigam, K.2
-
43
-
-
84869147060
-
Being accurate is not enough: How accuracy metrics have hurt recommender systems
-
ACM Press, New York, NY, USA
-
McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: CHI ’06: CHI ’06 extended abstracts on Human factors in computing systems, pp. 1097–1101. ACM Press, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1125451.1125659
-
(2006)
CHI ’06: CHI ’06 Extended Abstracts on Human Factors in Computing Systems
, pp. 1097-1101
-
-
McNee, S.M.1
Riedl, J.2
Konstan, J.A.3
-
44
-
-
0013248646
-
Collaborative filtering using weighted majority prediction algorithms
-
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
-
Nakamura, A., Abe, N.: Collaborative filtering using weighted majority prediction algorithms. In: ICML ’98: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 395–403. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1998)
-
(1998)
ICML ’98: Proceedings of the Fifteenth International Conference on Machine Learning
, pp. 395-403
-
-
Nakamura, A.1
Abe, N.2
-
46
-
-
0036384150
-
Etting to know you: Learning new user preferences in recommender systems
-
ACM Press, New York, NY, USA, DOI
-
Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., McNee, S.M., Konstan, J.A., Riedl, J.: Getting to know you: learning new user preferences in recommender systems. In: IUI ’02: Proceedings of the 7th international conference on Intelligent user interfaces, pp. 127–134. ACM Press, New York, NY, USA (2002). DOI http://doi.acm.org/10.1145/502716.502737
-
(2002)
Proceedings of the 7th international conference on Intelligent user interfaces
, pp. 127-134
-
-
Rashid, A.M.1
Albert, I.2
Cosley, D.3
Lam, S.K.4
McNee, S.M.5
Konstan, J.A.6
Riedl, J.7
-
47
-
-
84880098428
-
Influence in ratings-based recommender systems: An algorithm-independent approach
-
Rashid, A.M., Karypis, G., Riedl, J.: Influence in ratings-based recommender systems: An algorithm-independent approach. In: SIAM International Conference on Data Mining, pp. 556–560 (2005)
-
(2005)
SIAM International Conference on Data Mining
, pp. 556-560
-
-
Rashid, A.M.1
Karypis, G.2
Riedl, J.3
-
48
-
-
42149166795
-
The influence limiter: Provably manipulation-resistant recommender systems
-
ACM, New York, NY, USA
-
Resnick, P., Sami, R.: The influence limiter: provably manipulation-resistant recommender systems. In: Proceedings of the 2007 ACM conference on Recommender systems, RecSys ’07, pp. 25–32. ACM, New York, NY, USA (2007). URL http://doi.acm.org/10.1145/1297231.1297236
-
(2007)
Proceedings of the 2007 ACM Conference on Recommender Systems, Recsys ’07
, pp. 25-32
-
-
Resnick, P.1
Sami, R.2
-
49
-
-
34249988177
-
Acquiring and revising preferences in a critique-based mobile recommender system
-
Ricci, F., Nguyen, Q.N.: Acquiring and revising preferences in a critique-based mobile recommender system. IEEE Intelligent Systems 22(3), 22–29 (2007). DOI http://dx.doi.org/10.1109/MIS.2007.43
-
(2007)
IEEE Intelligent Systems
, vol.22
, Issue.3
, pp. 22-29
-
-
Ricci, F.1
Nguyen, Q.N.2
-
50
-
-
50549096139
-
Pessimistic cost-sensitive active learning of decision trees for profit maximizing targeting campaigns
-
Rokach, L., Naamani, L., Shmilovici, A.: Pessimistic cost-sensitive active learning of decision trees for profit maximizing targeting campaigns. DataMining and Knowledge Discovery 17(2), 283–316 (2008). DOI http://dx.doi.org/10.1007/s10618-008-0105-2
-
(2008)
Datamining and Knowledge Discovery
, vol.17
, Issue.2
, pp. 283-316
-
-
Rokach, L.1
Naamani, L.2
Shmilovici, A.3
-
51
-
-
0442319140
-
Toward optimal active learning through sampling estimation of error reduction
-
Morgan Kaufmann
-
Roy, N., Mccallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: In Proc. 18th International Conf. on Machine Learning, pp. 441–448. Morgan Kaufmann (2001)
-
(2001)
In Proc. 18Th International Conf. On Machine Learning
, pp. 441-448
-
-
Roy, N.1
McCallum, A.2
-
53
-
-
84868271034
-
Output divergence criterion for active learning in collaborative settings
-
Rubens, N., Tomioka, R., Sugiyama, M.: Output divergence criterion for active learning in collaborative settings. IPSJ Transactions on Mathematical Modeling and Its Applications 2(3), 87–96 (2009)
-
(2009)
IPSJ Transactions on Mathematical Modeling and Its Applications
, vol.2
, Issue.3
, pp. 87-96
-
-
Rubens, N.1
Tomioka, R.2
Sugiyama, M.3
-
55
-
-
0036989477
-
Methods and metrics for coldstart recommendations
-
ACM, New York, NY, USA, DOI
-
Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for coldstart recommendations. In: SIGIR ’02: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 253–260. ACM, New York, NY, USA (2002). DOI http://doi.acm.org/10.1145/564376.564421
-
(2002)
In: SIGIR ’02: Proceedings of the 25Th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 253-260
-
-
Schein, A.I.1
Popescul, A.2
Ungar, L.H.3
Pennock, D.M.4
-
56
-
-
0007696417
-
Less is more: Active learning with support vector machines
-
Morgan Kaufmann, San Francisco, CA, URL citeseer.ist.psu.edu/schohn00less.html
-
Schohn, G., Cohn, D.: Less is more: Active learning with support vector machines. In: Proc. 17th International Conf. on Machine Learning, pp. 839–846. Morgan Kaufmann, San Francisco, CA (2000). URL citeseer.ist.psu.edu/schohn00less.html
-
(2000)
Proc. 17Th International Conf. On Machine Learning
, pp. 839-846
-
-
Schohn, G.1
Cohn, D.2
-
57
-
-
68949137209
-
Active learning literature survey. Computer Sciences Technical Report 1648
-
Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin–Madison (2009)
-
(2009)
University of Wisconsin–Madison
-
-
Settles, B.1
-
59
-
-
79952422319
-
Active learning with real annotation costs
-
Settles, B., Craven, M., Friedland, L.: Active learning with real annotation costs. In: Proceedings of the NIPS Workshop on Cost-Sensitive Learning, pp. 1–10 (2008)
-
(2008)
Proceedings of the NIPS Workshop on Cost-Sensitive Learning
, pp. 1-10
-
-
Settles, B.1
Craven, M.2
Friedland, L.3
-
60
-
-
85162065706
-
Multiple-instance active learning
-
MIT Press
-
Settles, B., Craven, M., Ray, S.: Multiple-instance active learning. In: Advances in Neural Information Processing Systems (NIPS), vol. 20, pp. 1289–1296. MIT Press (2008)
-
(2008)
Advances in Neural Information Processing Systems (NIPS)
, vol.20
, pp. 1289-1296
-
-
Settles, B.1
Craven, M.2
Ray, S.3
-
61
-
-
0026981853
-
Query by committee
-
URL citeseer.ist.psu.edu/seung92query.html
-
Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Computational Learning Theory, pp. 287–294 (1992). URL citeseer.ist.psu.edu/seung92query.html
-
(1992)
Computational Learning Theory
, pp. 287-294
-
-
Seung, H.S.1
Opper, M.2
Sompolinsky, H.3
-
62
-
-
30744458353
-
Active learning in approximately linear regression based on conditional expectation of generalization error
-
Sugiyama, M.: Active learning in approximately linear regression based on conditional expectation of generalization error. Journal of Machine Learning Research 7, 141–166 (2006)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 141-166
-
-
Sugiyama, M.1
-
64
-
-
84956813597
-
-
MIT Press, Cambridge
-
Sugiyama, M., Rubens, N., Müller, K.R.: Dataset Shift in Machine Learning, chap. A conditional expectation approach to model selection and active learning under covariate shift. MIT Press, Cambridge (2008)
-
(2008)
Dataset Shift in Machine Learning, Chap. A Conditional Expectation Approach to Model Selection and Active Learning under Covariate Shift
-
-
Sugiyama, M.1
Rubens, N.2
Müller, K.R.3
-
65
-
-
84977886950
-
Active learning and search on low-rank matrices
-
ACM, New York, NY, USA
-
Sutherland, D.J., Póczos, B., Schneider, J.: Active learning and search on low-rank matrices. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13, pp. 212–220. ACM, New York, NY, USA (2013). DOI 10.1145/2487575.2487627. URL http://doi.acm.org/10.1145/2487575.2487627
-
(2013)
In: Proceedings of the 19Th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13
, pp. 212-220
-
-
Sutherland, D.J.1
Póczos, B.2
Schneider, J.3
-
67
-
-
0003007938
-
-
P. Langley (ed.), Morgan Kaufmann Publishers, San Francisco, US, Stanford, US, URL citeseer.ist.psu.edu/article/tong01support.html
-
Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. In: P. Langley (ed.) Proceedings of ICML-00, 17th International Conference on Machine Learning, pp. 999–1006. Morgan Kaufmann Publishers, San Francisco, US, Stanford, US (2000). URL citeseer.ist.psu.edu/article/tong01support.html
-
(2000)
Support vector machine active learning with applications to text classification
, pp. 999-1006
-
-
Tong, S.1
Koller, D.2
-
68
-
-
33749265864
-
Active learning via transductive experimental design
-
ACM, New York, NY, USA, DOI
-
Yu, K., Bi, J., Tresp, V.: Active learning via transductive experimental design. In: Proceedings of the 23rd Int. Conference on Machine Learning ICML ’06, pp. 1081–1088. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1143844.1143980
-
(2006)
In: Proceedings of the 23Rd Int. Conference on Machine Learning ICML ’06
, pp. 1081-1088
-
-
Yu, K.1
Bi, J.2
Tresp, V.3
-
69
-
-
84893422716
-
Active transfer learning for cross-system recommendation
-
Zhao, L., Pan, S.J., Xiang, E.W., Zhong, E., Lu, Z., Yang, Q.: Active transfer learning for cross-system recommendation. In: AAAI (2013)
-
(2013)
AAAI
-
-
Zhao, L.1
Pan, S.J.2
Xiang, E.W.3
Zhong, E.4
Lu, Z.5
Yang, Q.6
-
70
-
-
84889565597
-
Interactive collaborative filtering
-
ACM, New York, NY, USA
-
Zhao, X., Zhang, W., Wang, J.: Interactive collaborative filtering. In: Proceedings of the 22nd ACM international conference on Conference on information & knowledge management, CIKM ’13, pp. 1411–1420. ACM, New York, NY, USA (2013). DOI 10.1145/2505515.2505690. URL http://doi.acm.org/10.1145/2505515.2505690
-
(2013)
Proceedings of the 22Nd ACM International Conference on Conference on Information & Knowledge Management, CIKM ’13
, pp. 1411-1420
-
-
Zhao, X.1
Zhang, W.2
Wang, J.3
|