메뉴 건너뛰기




Volumn , Issue , 2015, Pages 809-846

Active learning in recommender systems

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; RATING; RECOMMENDER SYSTEMS;

EID: 84956765131     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-1-4899-7637-6_24     Document Type: Chapter
Times cited : (177)

References (70)
  • 2
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 10
    • 78649917865 scopus 로고    scopus 로고
    • Evaluating the dynamic properties of recommendation algorithms
    • ACM, New York, NY, USA
    • Burke, R.: Evaluating the dynamic properties of recommendation algorithms. In: Proceedings of the fourth ACM conference on Recommender systems, RecSys ’10, pp. 225–228. ACM, New York, NY, USA (2010). URL http://doi.acm.org/10.1145/1864708.1864753
    • (2010) Proceedings of the Fourth ACM Conference on Recommender Systems, Recsys ’10 , pp. 225-228
    • Burke, R.1
  • 12
    • 85032543687 scopus 로고
    • A-optimality for regression designs. Tech. Rep, Stanford University
    • Chan, N.: A-optimality for regression designs. Tech. rep., Stanford University, Department of Statistics (1981)
    • (1981) Department of Statistics
    • Chan, N.1
  • 16
    • 34547875776 scopus 로고    scopus 로고
    • Choosing where to look next in a mutation sequence space: Active learning of informative p53 cancer rescue mutants
    • Danziger, S., Zeng, J., Wang, Y., Brachmann, R., Lathrop, R.: Choosing where to look next in a mutation sequence space: Active learning of informative p53 cancer rescue mutants. Bioinformatics 23(13), 104–114 (2007)
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. 104-114
    • Danziger, S.1    Zeng, J.2    Wang, Y.3    Brachmann, R.4    Lathrop, R.5
  • 19
    • 79960287505 scopus 로고    scopus 로고
    • Adaptive active learning in recommender systems
    • UMAP 2011, Girona, Spain, July 11–15, 2011. Proceedings
    • Elahi, M.: Adaptive active learning in recommender systems. In: User Modeling, Adaption and Personalization—19th International Conference, UMAP 2011, Girona, Spain, July 11–15, 2011. Proceedings, pp. 414–417 (2011)
    • (2011) User Modeling, Adaption and Personalization—19th International Conference , pp. 414-417
    • Elahi, M.1
  • 20
    • 84891751057 scopus 로고    scopus 로고
    • Active learning strategies for rating elicitation in collaborative filtering: A system-wide perspective
    • Elahi, M., Ricci, F., Rubens, N.: Active learning strategies for rating elicitation in collaborative filtering: a system-wide perspective. ACMTransactions on Intelligent Systems and Technology 5(11) (2013)
    • (2013) Acmtransactions on Intelligent Systems and Technology , vol.5 , Issue.11
    • Elahi, M.1    Ricci, F.2    Rubens, N.3
  • 22
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences 55(1), 119–139 (1997)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 24
    • 0036680338 scopus 로고    scopus 로고
    • Learning cost-sensitive active classifiers
    • Greiner, R., Grove, A., Roth, D.: Learning cost-sensitive active classifiers. Artificial Intelligence 139, 137–174 (2002)
    • (2002) Artificial Intelligence , vol.139 , pp. 137-174
    • Greiner, R.1    Grove, A.2    Roth, D.3
  • 27
    • 3042697346 scopus 로고    scopus 로고
    • Evaluating collaborative filtering recommender systems
    • Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004). DOI http://doi.acm.org/10.1145/963770.963772
    • (2004) ACM Trans. Inf. Syst , vol.22 , Issue.1 , pp. 5-53
    • Herlocker, J.L.1    Konstan, J.A.2    Terveen, L.G.3    Riedl, J.T.4
  • 32
    • 84903886850 scopus 로고    scopus 로고
    • Selling vs. Profiling: Optimizing the offer set in web-based personalization
    • Johar, M., Mookerjee, V., Sarkar, S.: Selling vs. profiling: Optimizing the offer set in web-based personalization. Information Systems Research 25(2), 285–306 (2014).
    • (2014) Information Systems Research , vol.25 , Issue.2 , pp. 285-306
    • Johar, M.1    Mookerjee, V.2    Sarkar, S.3
  • 33
    • 0016474029 scopus 로고
    • D-optimality for regression designs: A review
    • John, R.C.S., Draper, N.R.: D-optimality for regression designs: A review. Technometrics 17(1), 15–23 (1975)
    • (1975) Technometrics , vol.17 , Issue.1 , pp. 15-23
    • John, R.1    Draper, N.R.2
  • 43
    • 84869147060 scopus 로고    scopus 로고
    • Being accurate is not enough: How accuracy metrics have hurt recommender systems
    • ACM Press, New York, NY, USA
    • McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: CHI ’06: CHI ’06 extended abstracts on Human factors in computing systems, pp. 1097–1101. ACM Press, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1125451.1125659
    • (2006) CHI ’06: CHI ’06 Extended Abstracts on Human Factors in Computing Systems , pp. 1097-1101
    • McNee, S.M.1    Riedl, J.2    Konstan, J.A.3
  • 44
    • 0013248646 scopus 로고    scopus 로고
    • Collaborative filtering using weighted majority prediction algorithms
    • Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
    • Nakamura, A., Abe, N.: Collaborative filtering using weighted majority prediction algorithms. In: ICML ’98: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 395–403. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1998)
    • (1998) ICML ’98: Proceedings of the Fifteenth International Conference on Machine Learning , pp. 395-403
    • Nakamura, A.1    Abe, N.2
  • 47
    • 84880098428 scopus 로고    scopus 로고
    • Influence in ratings-based recommender systems: An algorithm-independent approach
    • Rashid, A.M., Karypis, G., Riedl, J.: Influence in ratings-based recommender systems: An algorithm-independent approach. In: SIAM International Conference on Data Mining, pp. 556–560 (2005)
    • (2005) SIAM International Conference on Data Mining , pp. 556-560
    • Rashid, A.M.1    Karypis, G.2    Riedl, J.3
  • 48
    • 42149166795 scopus 로고    scopus 로고
    • The influence limiter: Provably manipulation-resistant recommender systems
    • ACM, New York, NY, USA
    • Resnick, P., Sami, R.: The influence limiter: provably manipulation-resistant recommender systems. In: Proceedings of the 2007 ACM conference on Recommender systems, RecSys ’07, pp. 25–32. ACM, New York, NY, USA (2007). URL http://doi.acm.org/10.1145/1297231.1297236
    • (2007) Proceedings of the 2007 ACM Conference on Recommender Systems, Recsys ’07 , pp. 25-32
    • Resnick, P.1    Sami, R.2
  • 49
    • 34249988177 scopus 로고    scopus 로고
    • Acquiring and revising preferences in a critique-based mobile recommender system
    • Ricci, F., Nguyen, Q.N.: Acquiring and revising preferences in a critique-based mobile recommender system. IEEE Intelligent Systems 22(3), 22–29 (2007). DOI http://dx.doi.org/10.1109/MIS.2007.43
    • (2007) IEEE Intelligent Systems , vol.22 , Issue.3 , pp. 22-29
    • Ricci, F.1    Nguyen, Q.N.2
  • 50
    • 50549096139 scopus 로고    scopus 로고
    • Pessimistic cost-sensitive active learning of decision trees for profit maximizing targeting campaigns
    • Rokach, L., Naamani, L., Shmilovici, A.: Pessimistic cost-sensitive active learning of decision trees for profit maximizing targeting campaigns. DataMining and Knowledge Discovery 17(2), 283–316 (2008). DOI http://dx.doi.org/10.1007/s10618-008-0105-2
    • (2008) Datamining and Knowledge Discovery , vol.17 , Issue.2 , pp. 283-316
    • Rokach, L.1    Naamani, L.2    Shmilovici, A.3
  • 51
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • Morgan Kaufmann
    • Roy, N., Mccallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: In Proc. 18th International Conf. on Machine Learning, pp. 441–448. Morgan Kaufmann (2001)
    • (2001) In Proc. 18Th International Conf. On Machine Learning , pp. 441-448
    • Roy, N.1    McCallum, A.2
  • 56
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning with support vector machines
    • Morgan Kaufmann, San Francisco, CA, URL citeseer.ist.psu.edu/schohn00less.html
    • Schohn, G., Cohn, D.: Less is more: Active learning with support vector machines. In: Proc. 17th International Conf. on Machine Learning, pp. 839–846. Morgan Kaufmann, San Francisco, CA (2000). URL citeseer.ist.psu.edu/schohn00less.html
    • (2000) Proc. 17Th International Conf. On Machine Learning , pp. 839-846
    • Schohn, G.1    Cohn, D.2
  • 57
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey. Computer Sciences Technical Report 1648
    • Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin–Madison (2009)
    • (2009) University of Wisconsin–Madison
    • Settles, B.1
  • 61
  • 62
    • 30744458353 scopus 로고    scopus 로고
    • Active learning in approximately linear regression based on conditional expectation of generalization error
    • Sugiyama, M.: Active learning in approximately linear regression based on conditional expectation of generalization error. Journal of Machine Learning Research 7, 141–166 (2006)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 141-166
    • Sugiyama, M.1
  • 67
    • 0003007938 scopus 로고    scopus 로고
    • P. Langley (ed.), Morgan Kaufmann Publishers, San Francisco, US, Stanford, US, URL citeseer.ist.psu.edu/article/tong01support.html
    • Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. In: P. Langley (ed.) Proceedings of ICML-00, 17th International Conference on Machine Learning, pp. 999–1006. Morgan Kaufmann Publishers, San Francisco, US, Stanford, US (2000). URL citeseer.ist.psu.edu/article/tong01support.html
    • (2000) Support vector machine active learning with applications to text classification , pp. 999-1006
    • Tong, S.1    Koller, D.2
  • 69


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.