-
2
-
-
33750717265
-
Active collaborative filtering
-
Morgan Kaufmann Publishers Inc
-
C. Boutilier, R. S. Zemel, and B. Marlin. Active collaborative filtering. In UAI. Morgan Kaufmann Publishers Inc, 2002.
-
(2002)
UAI
-
-
Boutilier, C.1
Zemel, R.S.2
Marlin, B.3
-
4
-
-
77955994778
-
Efficient computation of robust low-rank matrix approximations in the presence of missing data using the L1 norm
-
A. Eriksson and A. Van Den Hengel. Efficient computation of robust low-rank matrix approximations in the presence of missing data using the L1 norm. CVPR, pages 771-778, 2010.
-
(2010)
CVPR
, pp. 771-778
-
-
Eriksson, A.1
Van Den Hengel, A.2
-
5
-
-
84897514951
-
Bayesian optimal active search on graphs
-
R. Garnett, Y. Krishnamurthy, D. Wang, J. Schneider, and R. Mann. Bayesian Optimal Active Search on Graphs. In Ninth Workshop on Mining and Learning with Graphs, 2011.
-
(2011)
Ninth Workshop on Mining and Learning with Graphs
-
-
Garnett, R.1
Krishnamurthy, Y.2
Wang, D.3
Schneider, J.4
Mann, R.5
-
6
-
-
84867117792
-
Bayesian optimal active search and surveying
-
R. Garnett, Y. Krishnamurthy, X. Xiong, J. Schneider, and R. Mann. Bayesian optimal active search and surveying. In ICML, 2012.
-
(2012)
ICML
-
-
Garnett, R.1
Krishnamurthy, Y.2
Xiong, X.3
Schneider, J.4
Mann, R.5
-
8
-
-
84894253668
-
The no-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo
-
press
-
M. D. Hoffman and A. Gelman. The no-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, In press.
-
Journal of Machine Learning Research
-
-
Hoffman, M.D.1
Gelman, A.2
-
10
-
-
0000951308
-
On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables
-
L. Isserlis. On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika, 12:134-139, 1918.
-
(1918)
Biometrika
, vol.12
, pp. 134-139
-
-
Isserlis, L.1
-
12
-
-
79961191913
-
Active learning for aspect model in recommender systems
-
R. Karimi, C. Freudenthaler, A. Nanopoulos, and L. Schmidt-Thieme. Active learning for aspect model in recommender systems. IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pages 162-167, 2011.
-
(2011)
IEEE Symposium on Computational Intelligence and Data Mining (CIDM)
, pp. 162-167
-
-
Karimi, R.1
Freudenthaler, C.2
Nanopoulos, A.3
Schmidt-Thieme, L.4
-
13
-
-
80053146324
-
Non-myopic active learning for recommender systems based on matrix factorization
-
R. Karimi, C. Freudenthaler, A. Nanopoulos, and L. Schmidt-Thieme. Non-myopic active learning for recommender systems based on matrix factorization. Information Reuse and Integration (IRI), pages 299-303, 2011.
-
(2011)
Information Reuse and Integration (IRI)
, pp. 299-303
-
-
Karimi, R.1
Freudenthaler, C.2
Nanopoulos, A.3
Schmidt-Thieme, L.4
-
14
-
-
84855759376
-
Towards optimal active learning for matrix factorization in recommender systems
-
R. Karimi, C. Freudenthaler, A. Nanopoulos, and L. Schmidt-Thieme. Towards optimal active learning for matrix factorization in recommender systems. In Tools with Artificial Intelligence (ICTAI), pages 1069-1076, 2011.
-
(2011)
Tools with Artificial Intelligence (ICTAI)
, pp. 1069-1076
-
-
Karimi, R.1
Freudenthaler, C.2
Nanopoulos, A.3
Schmidt-Thieme, L.4
-
15
-
-
84867366676
-
Exploiting the characteristics of matrix factorization for active learning in recommender systems
-
R. Karimi, C. Freudenthaler, A. Nanopoulos, and L. Schmidt-Thieme. Exploiting the characteristics of matrix factorization for active learning in recommender systems. In RecSys'12, 2012.
-
(2012)
RecSys'12
-
-
Karimi, R.1
Freudenthaler, C.2
Nanopoulos, A.3
Schmidt-Thieme, L.4
-
16
-
-
78651287426
-
DrugBank 3.0: A comprehensive resource for'omics' research on drugs
-
Database
-
C. Knox, V. Law, T. Jewison, P. Liu, S. Ly, A. Frolkis, A. Pon, K. Banco, C. Mak, V. Neveu, Y. Djoumbou, R. Eisner, A. C. Guo, and D. S. Wishart. DrugBank 3.0: A comprehensive resource for'omics' research on drugs. Nucleic Acids Research, 39(Database):D1035-D1041, 2010.
-
(2010)
Nucleic Acids Research
, vol.39
, pp. D1035-D1041
-
-
Knox, C.1
Law, V.2
Jewison, T.3
Liu, P.4
Ly, S.5
Frolkis, A.6
Pon, A.7
Banco, K.8
Mak, C.9
Neveu, V.10
Djoumbou, Y.11
Eisner, R.12
Guo, A.C.13
Wishart, D.S.14
-
18
-
-
85057196821
-
MCMC using Hamiltonian dynamics
-
S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, editors, Handbooks of Modern Statistical Methods. Chapman & Hall/CRC
-
R. M. Neal. MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, editors, Handbook of Markov Chain Monte Carlo, Handbooks of Modern Statistical Methods. Chapman & Hall/CRC, 2011.
-
(2011)
Handbook of Markov Chain Monte Carlo
-
-
Neal, R.M.1
-
21
-
-
80053104089
-
Active collaborative prediction with maximum margin matrix factorization
-
I. Rish and G. Tesauro. Active collaborative prediction with maximum margin matrix factorization. Inform. Theory and App. Workshop, 2007.
-
(2007)
Inform. Theory and App. Workshop
-
-
Rish, I.1
Tesauro, G.2
-
22
-
-
79960335882
-
Active learning in recommender systems
-
P. Kantor, F. Ricci, L. Rokach, and B. Shapira, editors, Springer
-
N. Rubens, D. Kaplan, and M. Sugiyama. Active learning in recommender systems. In P. Kantor, F. Ricci, L. Rokach, and B. Shapira, editors, Recommender Systems Handbook, pages 735-767. Springer, 2011.
-
(2011)
Recommender Systems Handbook
, pp. 735-767
-
-
Rubens, N.1
Kaplan, D.2
Sugiyama, M.3
-
23
-
-
56449131205
-
Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
-
R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In ICML, pages 880-887, 2008.
-
(2008)
ICML
, pp. 880-887
-
-
Salakhutdinov, R.1
Mnih, A.2
-
24
-
-
85161989354
-
Probabilistic matrix factorization
-
R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS, 2008.
-
(2008)
NIPS
-
-
Salakhutdinov, R.1
Mnih, A.2
-
25
-
-
79951750366
-
Generalized probabilistic matrix factorizations for collaborative filtering
-
H. Shan and A. Banerjee. Generalized probabilistic matrix factorizations for collaborative filtering. In ICDM, pages 1025-1030, 2010.
-
(2010)
ICDM
, pp. 1025-1030
-
-
Shan, H.1
Banerjee, A.2
-
26
-
-
84866005768
-
Active learning for online Bayesian matrix factorization
-
J. Silva and L. Carin. Active learning for online Bayesian matrix factorization. In KDD, 2012.
-
(2012)
KDD
-
-
Silva, J.1
Carin, L.2
-
27
-
-
84898932317
-
Maximum-margin matrix factorization
-
N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. In NIPS, volume 17, pages 1329-1336, 2005.
-
(2005)
NIPS
, vol.17
, pp. 1329-1336
-
-
Srebro, N.1
Rennie, J.2
Jaakkola, T.3
-
29
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
S. Tong and D. Koller. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2:45-66, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
31
-
-
2342586046
-
Collaborative ensemble learning: Combining collaborative and content-based information filtering via hierarchical Bayes
-
K. Yu, A. Schwaighofer, and V. Tresp. Collaborative ensemble learning: Combining collaborative and content-based information filtering via hierarchical Bayes. UAI, pages 616-623, 2002.
-
(2002)
UAI
, pp. 616-623
-
-
Yu, K.1
Schwaighofer, A.2
Tresp, V.3
-
32
-
-
84880250677
-
Kernelized probabilistic matrix factorization: Exploiting graphs and side information
-
T. Zhou, H. Shan, A. Banerjee, and G. Sapiro. Kernelized probabilistic matrix factorization: Exploiting graphs and side information. In SIAM Data Mining, pages 403-414, 2012.
-
(2012)
SIAM Data Mining
, pp. 403-414
-
-
Zhou, T.1
Shan, H.2
Banerjee, A.3
Sapiro, G.4
|