메뉴 건너뛰기




Volumn Part F128815, Issue , 2013, Pages 212-220

Active learning and search on low-rank matrices

Author keywords

Active learning; Active search; Coldstart; Collaborative filtering; Drug discovery; Matrix factorization; Recommender systems

Indexed keywords

ARTIFICIAL INTELLIGENCE; COLLABORATIVE FILTERING; DATA MINING; EDUCATION; FACTORIZATION; FORECASTING; MARKOV PROCESSES; MONTE CARLO METHODS; QUERY PROCESSING; RECOMMENDER SYSTEMS;

EID: 84977886950     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2487575.2487627     Document Type: Conference Paper
Times cited : (36)

References (32)
  • 2
    • 33750717265 scopus 로고    scopus 로고
    • Active collaborative filtering
    • Morgan Kaufmann Publishers Inc
    • C. Boutilier, R. S. Zemel, and B. Marlin. Active collaborative filtering. In UAI. Morgan Kaufmann Publishers Inc, 2002.
    • (2002) UAI
    • Boutilier, C.1    Zemel, R.S.2    Marlin, B.3
  • 4
    • 77955994778 scopus 로고    scopus 로고
    • Efficient computation of robust low-rank matrix approximations in the presence of missing data using the L1 norm
    • A. Eriksson and A. Van Den Hengel. Efficient computation of robust low-rank matrix approximations in the presence of missing data using the L1 norm. CVPR, pages 771-778, 2010.
    • (2010) CVPR , pp. 771-778
    • Eriksson, A.1    Van Den Hengel, A.2
  • 8
    • 84894253668 scopus 로고    scopus 로고
    • The no-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo
    • press
    • M. D. Hoffman and A. Gelman. The no-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, In press.
    • Journal of Machine Learning Research
    • Hoffman, M.D.1    Gelman, A.2
  • 10
    • 0000951308 scopus 로고
    • On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables
    • L. Isserlis. On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika, 12:134-139, 1918.
    • (1918) Biometrika , vol.12 , pp. 134-139
    • Isserlis, L.1
  • 15
    • 84867366676 scopus 로고    scopus 로고
    • Exploiting the characteristics of matrix factorization for active learning in recommender systems
    • R. Karimi, C. Freudenthaler, A. Nanopoulos, and L. Schmidt-Thieme. Exploiting the characteristics of matrix factorization for active learning in recommender systems. In RecSys'12, 2012.
    • (2012) RecSys'12
    • Karimi, R.1    Freudenthaler, C.2    Nanopoulos, A.3    Schmidt-Thieme, L.4
  • 18
    • 85057196821 scopus 로고    scopus 로고
    • MCMC using Hamiltonian dynamics
    • S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, editors, Handbooks of Modern Statistical Methods. Chapman & Hall/CRC
    • R. M. Neal. MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, editors, Handbook of Markov Chain Monte Carlo, Handbooks of Modern Statistical Methods. Chapman & Hall/CRC, 2011.
    • (2011) Handbook of Markov Chain Monte Carlo
    • Neal, R.M.1
  • 21
    • 80053104089 scopus 로고    scopus 로고
    • Active collaborative prediction with maximum margin matrix factorization
    • I. Rish and G. Tesauro. Active collaborative prediction with maximum margin matrix factorization. Inform. Theory and App. Workshop, 2007.
    • (2007) Inform. Theory and App. Workshop
    • Rish, I.1    Tesauro, G.2
  • 22
    • 79960335882 scopus 로고    scopus 로고
    • Active learning in recommender systems
    • P. Kantor, F. Ricci, L. Rokach, and B. Shapira, editors, Springer
    • N. Rubens, D. Kaplan, and M. Sugiyama. Active learning in recommender systems. In P. Kantor, F. Ricci, L. Rokach, and B. Shapira, editors, Recommender Systems Handbook, pages 735-767. Springer, 2011.
    • (2011) Recommender Systems Handbook , pp. 735-767
    • Rubens, N.1    Kaplan, D.2    Sugiyama, M.3
  • 23
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
    • R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In ICML, pages 880-887, 2008.
    • (2008) ICML , pp. 880-887
    • Salakhutdinov, R.1    Mnih, A.2
  • 24
    • 85161989354 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS, 2008.
    • (2008) NIPS
    • Salakhutdinov, R.1    Mnih, A.2
  • 25
    • 79951750366 scopus 로고    scopus 로고
    • Generalized probabilistic matrix factorizations for collaborative filtering
    • H. Shan and A. Banerjee. Generalized probabilistic matrix factorizations for collaborative filtering. In ICDM, pages 1025-1030, 2010.
    • (2010) ICDM , pp. 1025-1030
    • Shan, H.1    Banerjee, A.2
  • 26
    • 84866005768 scopus 로고    scopus 로고
    • Active learning for online Bayesian matrix factorization
    • J. Silva and L. Carin. Active learning for online Bayesian matrix factorization. In KDD, 2012.
    • (2012) KDD
    • Silva, J.1    Carin, L.2
  • 27
    • 84898932317 scopus 로고    scopus 로고
    • Maximum-margin matrix factorization
    • N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. In NIPS, volume 17, pages 1329-1336, 2005.
    • (2005) NIPS , vol.17 , pp. 1329-1336
    • Srebro, N.1    Rennie, J.2    Jaakkola, T.3
  • 29
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2:45-66, 2002.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 30
    • 84867381268 scopus 로고    scopus 로고
    • On top-k recommendation using social networks
    • X. Yang, H. Steck, Y. Guo, and Y. Liu. On top-k recommendation using social networks. In RecSys'12, 2012.
    • (2012) RecSys'12
    • Yang, X.1    Steck, H.2    Guo, Y.3    Liu, Y.4
  • 31
    • 2342586046 scopus 로고    scopus 로고
    • Collaborative ensemble learning: Combining collaborative and content-based information filtering via hierarchical Bayes
    • K. Yu, A. Schwaighofer, and V. Tresp. Collaborative ensemble learning: Combining collaborative and content-based information filtering via hierarchical Bayes. UAI, pages 616-623, 2002.
    • (2002) UAI , pp. 616-623
    • Yu, K.1    Schwaighofer, A.2    Tresp, V.3
  • 32
    • 84880250677 scopus 로고    scopus 로고
    • Kernelized probabilistic matrix factorization: Exploiting graphs and side information
    • T. Zhou, H. Shan, A. Banerjee, and G. Sapiro. Kernelized probabilistic matrix factorization: Exploiting graphs and side information. In SIAM Data Mining, pages 403-414, 2012.
    • (2012) SIAM Data Mining , pp. 403-414
    • Zhou, T.1    Shan, H.2    Banerjee, A.3    Sapiro, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.