메뉴 건너뛰기




Volumn 258, Issue , 2007, Pages 379-388

Selectively acquiring ratings for product recommendation

Author keywords

Active learning; Collaborative filtering; Recommender systems; Sampling

Indexed keywords

ACTIVE LEARNING; COLLABORATIVE FILTERING; RECOMMENDER SYSTEMS;

EID: 36849010669     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1282100.1282171     Document Type: Conference Paper
Times cited : (18)

References (37)
  • 1
    • 0035251446 scopus 로고    scopus 로고
    • Using data mining methods to build customer profiles
    • Adomavicius, G. and Tuzhilin, A. Using data mining methods to build customer profiles. IEEE Computer, 34 (2). 74-82, 2001.
    • (2001) IEEE Computer , vol.34 , Issue.2 , pp. 74-82
    • Adomavicius, G.1    Tuzhilin, A.2
  • 2
    • 0000710299 scopus 로고
    • Queries and concept learning
    • Angluin, D. Queries and concept learning. Machine Learning, 2. 319-342, 1988.
    • (1988) Machine Learning , vol.2 , pp. 319-342
    • Angluin, D.1
  • 7
    • 0028424239 scopus 로고
    • Improved generalization with active learning
    • Cohn, D., Atlas, L. and Ladner, R. Improved generalization with active learning. Machine Learning, 15. 201-221, 1994.
    • (1994) Machine Learning , vol.15 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 10
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Freund, Y., Seung, H.S., Shamir, E. and Tishby, N. Selective sampling using the query by committee algorithm. Machine Learning, 28 (2-3). 133-168, 1997.
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 11
    • 0002549585 scopus 로고    scopus 로고
    • Eigentaste: A constant time collaborative filtering algorithm
    • Goldberg, K., Roeder, T., Gupta, D. and Perkins, C. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 4 (2). 133-151, 2001.
    • (2001) Information Retrieval , vol.4 , Issue.2 , pp. 133-151
    • Goldberg, K.1    Roeder, T.2    Gupta, D.3    Perkins, C.4
  • 12
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • Hofmann, T. Latent semantic models for collaborative filtering. ACM Transactions on Information Systems, 22 (1). 89-115, 2004.
    • (2004) ACM Transactions on Information Systems , vol.22 , Issue.1 , pp. 89-115
    • Hofmann, T.1
  • 14
    • 3042819722 scopus 로고    scopus 로고
    • Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
    • Huang, Z., Chen, H. and Zeng, D. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Transactions on Information Systems (TOIS), 22 (1). 116-142, 2004.
    • (2004) ACM Transactions on Information Systems (TOIS) , vol.22 , Issue.1 , pp. 116-142
    • Huang, Z.1    Chen, H.2    Zeng, D.3
  • 15
    • 80051531169 scopus 로고    scopus 로고
    • Why does collaborative filtering work? - Recommendation model validation and selection by analyzing random bipartite graphs
    • Las Vegas, NV
    • Huang, Z. and Zeng, D., Why does collaborative filtering work? - Recommendation model validation and selection by analyzing random bipartite graphs, in Fifteenth Annual Workshop on Information Technologies and Systems (WITS 2005), (Las Vegas, NV, 2005).
    • (2005) Fifteenth Annual Workshop on Information Technologies and Systems (WITS 2005)
    • Huang, Z.1    Zeng, D.2
  • 16
    • 36849045762 scopus 로고    scopus 로고
    • A comparative study of recommendation algorithms for e-commerce applications
    • forthcoming
    • Huang, Z., Zeng, D. and Chen, H. A comparative study of recommendation algorithms for e-commerce applications. IEEE Intelligent Systems, forthcoming, 2007.
    • (2007) IEEE Intelligent Systems
    • Huang, Z.1    Zeng, D.2    Chen, H.3
  • 17
    • 85139032927 scopus 로고    scopus 로고
    • A link analysis approach to recommendation with sparse data
    • New York, NY
    • Huang, Z., Zeng, D. and Chen, H., A link analysis approach to recommendation with sparse data, in Americas Conference on Information Systems, (New York, NY, 2004), 1997-2005.
    • (2004) Americas Conference on Information Systems , pp. 1997-2005
    • Huang, Z.1    Zeng, D.2    Chen, H.3
  • 18
    • 34748918427 scopus 로고    scopus 로고
    • A Bayesian approach toward active learning for collaborative filtering
    • Banff, Canada
    • Jin, R. and Si, L., A Bayesian approach toward active learning for collaborative filtering, in Twentieth Conference on Uncertainty in Artificial Intelligence, (Banff, Canada, 2004), 278-285.
    • (2004) Twentieth Conference on Uncertainty in Artificial Intelligence , pp. 278-285
    • Jin, R.1    Si, L.2
  • 21
    • 0036103365 scopus 로고    scopus 로고
    • Efficient adaptive-support association rule mining for recommender systems
    • Lin, W., Alvarez, S.A. and Ruiz, C. Efficient adaptive-support association rule mining for recommender systems. Data Mining and Knowledge Discovery, 6. 83-105, 2002.
    • (2002) Data Mining and Knowledge Discovery , vol.6 , pp. 83-105
    • Lin, W.1    Alvarez, S.A.2    Ruiz, C.3
  • 22
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • Linden, G., Smith, B. and York, J. Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 7 (1). 76-80, 2003.
    • (2003) IEEE Internet Computing , vol.7 , Issue.1 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 23
    • 0033325071 scopus 로고    scopus 로고
    • A framework for collaborative, content-based and demographic filtering
    • Pazzani, M. A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13 (5). 393-408, 1999.
    • (1999) Artificial Intelligence Review , vol.13 , Issue.5 , pp. 393-408
    • Pazzani, M.1
  • 27
    • 84966203785 scopus 로고
    • Some aspects of the sequential design of experiments
    • Robbins, H. Some aspects of the sequential design of experiments. Bulletin American Mathematical Society, 55. 527-535, 1952.
    • (1952) Bulletin American Mathematical Society , vol.55 , pp. 527-535
    • Robbins, H.1
  • 28
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • Morgan Kaufmann
    • Roy, N. and McCallum, A., Toward optimal active learning through sampling estimation of error reduction, in 18th International Conference on Machine Learning, (2001), Morgan Kaufmann, 441-448.
    • (2001) 18th International Conference on Machine Learning , pp. 441-448
    • Roy, N.1    McCallum, A.2
  • 29
    • 1242285091 scopus 로고    scopus 로고
    • Active sampling for class probability estimation and ranking
    • Saar-Tsechansky, M. and Provost, F. Active sampling for class probability estimation and ranking. Machine Learning, 54. 153-178, 2004.
    • (2004) Machine Learning , vol.54 , pp. 153-178
    • Saar-Tsechansky, M.1    Provost, F.2
  • 30
  • 31
  • 37
    • 33646372465 scopus 로고    scopus 로고
    • Selectively acquiring Customer Information: A new data acquisition problem and an active learning-based solution
    • Zheng, Z. and Padmanabhan, B. Selectively acquiring Customer Information: A new data acquisition problem and an active learning-based solution. Management Science, 52 (5). 697-712, 2006.
    • (2006) Management Science , vol.52 , Issue.5 , pp. 697-712
    • Zheng, Z.1    Padmanabhan, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.