-
1
-
-
0035251446
-
Using data mining methods to build customer profiles
-
Adomavicius, G. and Tuzhilin, A. Using data mining methods to build customer profiles. IEEE Computer, 34 (2). 74-82, 2001.
-
(2001)
IEEE Computer
, vol.34
, Issue.2
, pp. 74-82
-
-
Adomavicius, G.1
Tuzhilin, A.2
-
2
-
-
0000710299
-
Queries and concept learning
-
Angluin, D. Queries and concept learning. Machine Learning, 2. 319-342, 1988.
-
(1988)
Machine Learning
, vol.2
, pp. 319-342
-
-
Angluin, D.1
-
5
-
-
33750717265
-
Active collaborative filtering
-
Boutilier, C., Zemel, R.S. and Marlin, B., Active collaborative filtering, in Nineteenth Annual Conference on Uncertainty in Artificial Intelligence, (2003), 98-106.
-
(2003)
Nineteenth Annual Conference on Uncertainty in Artificial Intelligence
, pp. 98-106
-
-
Boutilier, C.1
Zemel, R.S.2
Marlin, B.3
-
6
-
-
0002051628
-
Empirical analysis of predictive algorithms for collaborative filtering
-
Madison, WI, Morgan Kaufmann
-
Breese, J.S., Heckerman, D. and Kadie, C., Empirical analysis of predictive algorithms for collaborative filtering. in Fourteenth Conference on Uncertainty in Artificial Intelligence, (Madison, WI, 1998), Morgan Kaufmann, 43-52.
-
(1998)
Fourteenth Conference on Uncertainty in Artificial Intelligence
, pp. 43-52
-
-
Breese, J.S.1
Heckerman, D.2
Kadie, C.3
-
7
-
-
0028424239
-
Improved generalization with active learning
-
Cohn, D., Atlas, L. and Ladner, R. Improved generalization with active learning. Machine Learning, 15. 201-221, 1994.
-
(1994)
Machine Learning
, vol.15
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
8
-
-
0029679131
-
Active learning with statistical models
-
Cohn, D.A., Ghahramani, Z. and Jordan, M.I. Active learning with statistical models. Journal of Artificial Intelligence Research, 4. 129-145, 1996.
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 129-145
-
-
Cohn, D.A.1
Ghahramani, Z.2
Jordan, M.I.3
-
10
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Freund, Y., Seung, H.S., Shamir, E. and Tishby, N. Selective sampling using the query by committee algorithm. Machine Learning, 28 (2-3). 133-168, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.2-3
, pp. 133-168
-
-
Freund, Y.1
Seung, H.S.2
Shamir, E.3
Tishby, N.4
-
11
-
-
0002549585
-
Eigentaste: A constant time collaborative filtering algorithm
-
Goldberg, K., Roeder, T., Gupta, D. and Perkins, C. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 4 (2). 133-151, 2001.
-
(2001)
Information Retrieval
, vol.4
, Issue.2
, pp. 133-151
-
-
Goldberg, K.1
Roeder, T.2
Gupta, D.3
Perkins, C.4
-
12
-
-
3042742744
-
Latent semantic models for collaborative filtering
-
Hofmann, T. Latent semantic models for collaborative filtering. ACM Transactions on Information Systems, 22 (1). 89-115, 2004.
-
(2004)
ACM Transactions on Information Systems
, vol.22
, Issue.1
, pp. 89-115
-
-
Hofmann, T.1
-
13
-
-
84862271600
-
Latent class models for collaborative filtering
-
Stockholm, Morgan Kaufmann
-
Hofmann, T. and Puzicha, J., Latent class models for collaborative filtering, in International Joint Conference in Artificial Intelligence, (Stockholm, 1999), Morgan Kaufmann, 688-693.
-
(1999)
International Joint Conference in Artificial Intelligence
, pp. 688-693
-
-
Hofmann, T.1
Puzicha, J.2
-
14
-
-
3042819722
-
Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
-
Huang, Z., Chen, H. and Zeng, D. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Transactions on Information Systems (TOIS), 22 (1). 116-142, 2004.
-
(2004)
ACM Transactions on Information Systems (TOIS)
, vol.22
, Issue.1
, pp. 116-142
-
-
Huang, Z.1
Chen, H.2
Zeng, D.3
-
15
-
-
80051531169
-
Why does collaborative filtering work? - Recommendation model validation and selection by analyzing random bipartite graphs
-
Las Vegas, NV
-
Huang, Z. and Zeng, D., Why does collaborative filtering work? - Recommendation model validation and selection by analyzing random bipartite graphs, in Fifteenth Annual Workshop on Information Technologies and Systems (WITS 2005), (Las Vegas, NV, 2005).
-
(2005)
Fifteenth Annual Workshop on Information Technologies and Systems (WITS 2005)
-
-
Huang, Z.1
Zeng, D.2
-
16
-
-
36849045762
-
A comparative study of recommendation algorithms for e-commerce applications
-
forthcoming
-
Huang, Z., Zeng, D. and Chen, H. A comparative study of recommendation algorithms for e-commerce applications. IEEE Intelligent Systems, forthcoming, 2007.
-
(2007)
IEEE Intelligent Systems
-
-
Huang, Z.1
Zeng, D.2
Chen, H.3
-
17
-
-
85139032927
-
A link analysis approach to recommendation with sparse data
-
New York, NY
-
Huang, Z., Zeng, D. and Chen, H., A link analysis approach to recommendation with sparse data, in Americas Conference on Information Systems, (New York, NY, 2004), 1997-2005.
-
(2004)
Americas Conference on Information Systems
, pp. 1997-2005
-
-
Huang, Z.1
Zeng, D.2
Chen, H.3
-
18
-
-
34748918427
-
A Bayesian approach toward active learning for collaborative filtering
-
Banff, Canada
-
Jin, R. and Si, L., A Bayesian approach toward active learning for collaborative filtering, in Twentieth Conference on Uncertainty in Artificial Intelligence, (Banff, Canada, 2004), 278-285.
-
(2004)
Twentieth Conference on Uncertainty in Artificial Intelligence
, pp. 278-285
-
-
Jin, R.1
Si, L.2
-
21
-
-
0036103365
-
Efficient adaptive-support association rule mining for recommender systems
-
Lin, W., Alvarez, S.A. and Ruiz, C. Efficient adaptive-support association rule mining for recommender systems. Data Mining and Knowledge Discovery, 6. 83-105, 2002.
-
(2002)
Data Mining and Knowledge Discovery
, vol.6
, pp. 83-105
-
-
Lin, W.1
Alvarez, S.A.2
Ruiz, C.3
-
22
-
-
0037252945
-
Amazon.com recommendations: Item-to-item collaborative filtering
-
Linden, G., Smith, B. and York, J. Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 7 (1). 76-80, 2003.
-
(2003)
IEEE Internet Computing
, vol.7
, Issue.1
, pp. 76-80
-
-
Linden, G.1
Smith, B.2
York, J.3
-
23
-
-
0033325071
-
A framework for collaborative, content-based and demographic filtering
-
Pazzani, M. A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13 (5). 393-408, 1999.
-
(1999)
Artificial Intelligence Review
, vol.13
, Issue.5
, pp. 393-408
-
-
Pazzani, M.1
-
24
-
-
0001391984
-
Collaborative filtering by personality diagnosis: A hybrid memory- and model-based approach
-
Pennock, D.M., Horvitz, E., Lawrence, S. and Giles, C.L. Collaborative filtering by personality diagnosis: A hybrid memory- and model-based approach, 16th Conference on Uncertainty in Artificial Intelligence (UAI-2000), 2000, 473-480.
-
(2000)
16th Conference on Uncertainty in Artificial Intelligence (UAI-2000)
, pp. 473-480
-
-
Pennock, D.M.1
Horvitz, E.2
Lawrence, S.3
Giles, C.L.4
-
25
-
-
0012253296
-
Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments
-
Popescul, A., Ungar, L.H., Pennock, D.M. and Lavrence, S., Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments, in 17'th Conference on Uncertainty in Artificial Intelligence (UAI 2001). (2001), 437-444.
-
(2001)
17'th Conference on Uncertainty in Artificial Intelligence (UAI 2001)
, pp. 437-444
-
-
Popescul, A.1
Ungar, L.H.2
Pennock, D.M.3
Lavrence, S.4
-
26
-
-
85030174634
-
GroupLens: An open architecture for collaborative filtering of netnews
-
Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P. and Riedl, J., GroupLens: An open architecture for collaborative filtering of netnews. in ACM Conference on Computer-Supported Cooperative Work, (1994), 175-186.
-
(1994)
ACM Conference on Computer-Supported Cooperative Work
, pp. 175-186
-
-
Resnick, P.1
Iacovou, N.2
Suchak, M.3
Bergstorm, P.4
Riedl, J.5
-
27
-
-
84966203785
-
Some aspects of the sequential design of experiments
-
Robbins, H. Some aspects of the sequential design of experiments. Bulletin American Mathematical Society, 55. 527-535, 1952.
-
(1952)
Bulletin American Mathematical Society
, vol.55
, pp. 527-535
-
-
Robbins, H.1
-
28
-
-
0442319140
-
Toward optimal active learning through sampling estimation of error reduction
-
Morgan Kaufmann
-
Roy, N. and McCallum, A., Toward optimal active learning through sampling estimation of error reduction, in 18th International Conference on Machine Learning, (2001), Morgan Kaufmann, 441-448.
-
(2001)
18th International Conference on Machine Learning
, pp. 441-448
-
-
Roy, N.1
McCallum, A.2
-
29
-
-
1242285091
-
Active sampling for class probability estimation and ranking
-
Saar-Tsechansky, M. and Provost, F. Active sampling for class probability estimation and ranking. Machine Learning, 54. 153-178, 2004.
-
(2004)
Machine Learning
, vol.54
, pp. 153-178
-
-
Saar-Tsechansky, M.1
Provost, F.2
-
31
-
-
3042788736
-
Application of dimensionality reduction in recommender systems: A case study
-
Boston, MA
-
Sarwar, B., Karypis, G., Konstan, J. and Riedl, J., Application of dimensionality reduction in recommender systems: a case study, in WebKDD Workshop at the ACM SIGKKD, (Boston, MA, 2000).
-
(2000)
WebKDD Workshop at the ACM SIGKKD
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Riedl, J.4
-
32
-
-
85052617391
-
Item-based collaborative filtering recommendation algorithms
-
Sarwar, B.M., Karypis, G., Konstan, J.A. and Riedl, J.T., Item-based collaborative filtering recommendation algorithms. in Tenth International World Wide Web Conference, (2001), 285-295.
-
(2001)
Tenth International World Wide Web Conference
, pp. 285-295
-
-
Sarwar, B.M.1
Karypis, G.2
Konstan, J.A.3
Riedl, J.T.4
-
33
-
-
23044524651
-
E-commerce recommendation applications
-
Schafer, J., Konstan, J. and Riedl, J. E-commerce recommendation applications. Data Mining and Knowledge Discovery, 5 (1-2). 115-153, 2001.
-
(2001)
Data Mining and Knowledge Discovery
, vol.5
, Issue.1-2
, pp. 115-153
-
-
Schafer, J.1
Konstan, J.2
Riedl, J.3
-
35
-
-
4644281927
-
A formal statistical approach to collaborative filtering
-
Pittsburgh, PA
-
Ungar, L.H. and Foster, D.P., A formal statistical approach to collaborative filtering, in Conference on Automated Learning and Discovery (CONALD), (Pittsburgh, PA, 1998).
-
(1998)
Conference on Automated Learning and Discovery (CONALD)
-
-
Ungar, L.H.1
Foster, D.P.2
-
36
-
-
0742286175
-
Probabilistic memory-based collaborative filtering
-
Yu, K., Schwaighofer, A., Tresp, V., Xu, X. and Kriegel, H-P. Probabilistic memory-based collaborative filtering. IEEE Transactions on Knowledge and Data Engineering, 16(1). 56-69, 2004.
-
(2004)
IEEE Transactions on Knowledge and Data Engineering
, vol.16
, Issue.1
, pp. 56-69
-
-
Yu, K.1
Schwaighofer, A.2
Tresp, V.3
Xu, X.4
Kriegel, H.-P.5
-
37
-
-
33646372465
-
Selectively acquiring Customer Information: A new data acquisition problem and an active learning-based solution
-
Zheng, Z. and Padmanabhan, B. Selectively acquiring Customer Information: A new data acquisition problem and an active learning-based solution. Management Science, 52 (5). 697-712, 2006.
-
(2006)
Management Science
, vol.52
, Issue.5
, pp. 697-712
-
-
Zheng, Z.1
Padmanabhan, B.2
|