메뉴 건너뛰기




Volumn 5, Issue 1, 2013, Pages

Active learning strategies for rating elicitation in collaborative filtering: A system-wide perspective

Author keywords

Active learning; Cold start; Rating elicitation; Recommender systems

Indexed keywords

ACTIVE LEARNING; ACTIVE LEARNING STRATEGIES; COLD START; CUMULATIVE EFFECTS; EVALUATION MEASURES; PREDICTION ALGORITHMS; SYSTEM'S PERFORMANCE; USER-CENTRIC EVALUATIONS;

EID: 84891751057     PISSN: 21576904     EISSN: 21576912     Source Type: Journal    
DOI: 10.1145/2542182.2542195     Document Type: Article
Times cited : (72)

References (44)
  • 2
    • 84871881578 scopus 로고    scopus 로고
    • Efficiently learning the preferences of people
    • BIRLUTIU, A., GROOT, P., AND HESKES, T. 2012. Efficiently learning the preferences of people. Mach. Learn. 90, 1, 1-28.
    • (2012) Mach. Learn. , vol.90 , Issue.1 , pp. 1-28
    • Birlutiu, A.1    Groot, P.2    Heskes, T.3
  • 8
    • 84858701909 scopus 로고    scopus 로고
    • Critiquing-based recommenders: Survey and emerging trends
    • CHEN, L. AND PU, P. 2012. Critiquing-based recommenders: Survey and emerging trends. User Model. User- Adapt. Interact. 22, 1-2, 125-150.
    • (2012) User Model. User- Adapt. Interact. , vol.22 , Issue.1-2 , pp. 125-150
    • Chen, L.1    Pu, P.2
  • 10
    • 81055135842 scopus 로고    scopus 로고
    • A comprehensive survey of neighborhood-based recommendation methods
    • F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds., Springer
    • DESROSIERS, C. AND KARYPIS, G. 2011. A comprehensive survey of neighborhood-based recommendation methods. In Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds., Springer, 107-144.
    • (2011) Recommender Systems Handbook , pp. 107-144
    • Desrosiers, C.1    Karypis, G.2
  • 22
    • 1842637192 scopus 로고    scopus 로고
    • Cumulated gain-based evaluation of IR techniques
    • DOI 10.1145/582415.582418
    • JARVELIN, K. AND KEKALAINEN, J. 2002. Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst. 20, 4, 422-446. (Pubitemid 44642296)
    • (2002) ACM Transactions on Information Systems , vol.20 , Issue.4 , pp. 422-446
    • Jarvelin, K.1    Kekalainen, J.2
  • 25
    • 80052883059 scopus 로고    scopus 로고
    • Advances in collaborative filtering
    • F. Ricci, L. Rokach, B. Shapira, and P. Kantor, Eds., Springer
    • KOREN, Y. AND BELL, R. 2011. Advances in collaborative filtering. In Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P. Kantor, Eds., Springer, 145-186.
    • (2011) Recommender Systems Handbook , pp. 145-186
    • Koren, Y.1    Bell, R.2
  • 30
    • 8344240335 scopus 로고    scopus 로고
    • Interfaces for eliciting new user preferences in recommender systems
    • MCNEE, S. M., LAM, S. K., KONSTAN, J. A., AND RIEDL, J. 2003. Interfaces for eliciting new user preferences in recommender systems. In Proceedings of the International Conference on User Modeling. 178-187. (Pubitemid 36768563)
    • (2003) Lecture Notes In Computer Science , Issue.2702 , pp. 178-187
    • McNee, S.M.1    Lam, S.K.2    Konstan, J.A.3    Riedl, J.4
  • 32
    • 58649100926 scopus 로고    scopus 로고
    • User-involved preference elicitation for product search and recommender systems
    • PU, P. AND CHEN, L. 2008. User-involved preference elicitation for product search and recommender systems. AI Mag. 29, 4, 93-103.
    • (2008) AI Mag. , vol.29 , Issue.4 , pp. 93-103
    • Pu, P.1    Chen, L.2
  • 34
    • 77954605272 scopus 로고    scopus 로고
    • Learning preferences of new users in recommender systems: An information theoretic approach
    • RASHID, A. M., KARYPIS, G., AND RIEDL, J. 2008. Learning preferences of new users in recommender systems: An information theoretic approach. SIGKDD Explor. Newslett. 10, 90-100.
    • (2008) SIGKDD Explor. Newslett. , vol.10 , pp. 90-100
    • Rashid, A.M.1    Karypis, G.2    Riedl, J.3
  • 35
    • 42149166795 scopus 로고    scopus 로고
    • The influence limiter: Provably manipulation-resistant recommender systems
    • DOI 10.1145/1297231.1297236, RecSys'07: Proceedings of the 2007 ACM Conference on Recommender Systems
    • RESNICK, P. AND SAMI, R. 2007. The influence limiter: Provably manipulation-resistant recommender systems. In Proceedings of the ACM Conference on Recommender Systems (RecSys'07). ACM Press, New York, 25-32. (Pubitemid 351528409)
    • (2007) RecSys'07: Proceedings of the 2007 ACM Conference on Recommender Systems , pp. 25-32
    • Resnick, P.1    Sami, R.2
  • 37
    • 79960493432 scopus 로고    scopus 로고
    • Introduction to recommender systems handbook
    • F. Ricci, L. Rokach, B. Shapira, and P. Kantor, Eds., Springer
    • RICCI, F.,ROKACH, L., AND SHAPIRA, B. 2011a. Introduction to recommender systems handbook. In Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P. Kantor, Eds., Springer, 1-35.
    • (2011) Recommender Systems Handbook , pp. 1-35
    • Ricci, F.1    Rokach, L.2    Shapira, B.3
  • 39
    • 79960335882 scopus 로고    scopus 로고
    • Active learning in recommender systems
    • F. Ricci, L. Rokach, B. Shapira, and P. Kantor, Eds., Springer
    • RUBENS, N., KAPLAN, D., AND SUGIYAMA, M. 2011. Active learning in recommender systems. In Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P. Kantor, Eds., Springer, 735-767.
    • (2011) Recommender Systems Handbook , pp. 735-767
    • Rubens, N.1    Kaplan, D.2    Sugiyama, M.3
  • 41
    • 79955164643 scopus 로고    scopus 로고
    • Evaluating recommendation systems
    • F. Ricci, L. Rokach, and B. Shapira, Eds., Springer
    • SHANI, G. AND GUNAWARDANA, A. 2010. Evaluating recommendation systems. In Recommender Systems Handbook, F. Ricci, L. Rokach, and B. Shapira, Eds., Springer, 257-298.
    • (2010) Recommender Systems Handbook , pp. 257-298
    • Shani, G.1    Gunawardana, A.2
  • 42
    • 37149046109 scopus 로고    scopus 로고
    • TIMELY DEVELOPMENT L.
    • TIMELY DEVELOPMENT, L. 2008. Netflix prize. http://www.timelydevelopment. com/demos/NetflixPrize.aspx.
    • (2008) Netflix Prize.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.