메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1411-1420

Interactive collaborative filtering

Author keywords

Exploitation exploration; Interactive collaborative filtering; Personalization; Recommender systems

Indexed keywords

COLD START PROBLEMS; EXPLOITATION-EXPLORATION; INTERACTIVE FEEDBACK; INTERACTIVE PROCESS; PERSONALIZATIONS; PROBABILISTIC MATRIX FACTORIZATIONS; RECOMMENDATION ACCURACY; UPPER CONFIDENCE BOUND;

EID: 84889565597     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2505515.2505690     Document Type: Conference Paper
Times cited : (198)

References (41)
  • 2
    • 34948850364 scopus 로고    scopus 로고
    • A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem
    • H. Ahn. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Information Sciences, 2008.
    • (2008) Information Sciences
    • Ahn, H.1
  • 3
    • 72249091264 scopus 로고    scopus 로고
    • Rate it again: Increasing recommendation accuracy by user re-rating
    • X. Amatriain, J. Pujol, N. Tintarev, and N. Oliver. Rate it again: increasing recommendation accuracy by user re-rating. In RecSys, 2009.
    • (2009) RecSys
    • Amatriain, X.1    Pujol, J.2    Tintarev, N.3    Oliver, N.4
  • 5
    • 0041966002 scopus 로고    scopus 로고
    • Using confidence bounds for exploitation-exploration trade-offs
    • P. Auer. Using confidence bounds for exploitation-exploration trade-offs. The Journal of Machine Learning Research, 2003.
    • (2003) The Journal of Machine Learning Research
    • Auer, P.1
  • 10
    • 84898072179 scopus 로고    scopus 로고
    • Stochastic linear optimization under bandit feedback
    • V. Dani, T. Hayes, and S. Kakade. Stochastic linear optimization under bandit feedback. In COLT, 2008.
    • (2008) COLT
    • Dani, V.1    Hayes, T.2    Kakade, S.3
  • 11
    • 35348914807 scopus 로고    scopus 로고
    • Google news personalization: Scalable online collaborative filtering
    • A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online collaborative filtering. In WWW, 2007.
    • (2007) WWW
    • Das, A.S.1    Datar, M.2    Garg, A.3    Rajaram, S.4
  • 16
    • 78651341436 scopus 로고    scopus 로고
    • On bootstrapping recommender systems
    • N. Golbandi, Y. Koren, and R. Lempel. On bootstrapping recommender systems. In CIKM, 2010.
    • (2010) CIKM
    • Golbandi, N.1    Koren, Y.2    Lempel, R.3
  • 17
    • 79952423377 scopus 로고    scopus 로고
    • Adaptive bootstrapping of recommender systems using decision trees
    • N. Golbandi, Y. Koren, and R. Lempel. Adaptive bootstrapping of recommender systems using decision trees. In WSDM, 2011.
    • (2011) WSDM
    • Golbandi, N.1    Koren, Y.2    Lempel, R.3
  • 18
    • 57349112337 scopus 로고    scopus 로고
    • Personalized active learning for collaborative filtering
    • A. Harpale and Y. Yang. Personalized active learning for collaborative filtering. In SIGIR, 2008.
    • (2008) SIGIR
    • Harpale, A.1    Yang, Y.2
  • 19
    • 85015559680 scopus 로고    scopus 로고
    • An algorithmic framework for performing collaborative filtering
    • J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for performing collaborative filtering. In SIGIR, 1999.
    • (1999) SIGIR
    • Herlocker, J.L.1    Konstan, J.A.2    Borchers, A.3    Riedl, J.4
  • 20
    • 0000827254 scopus 로고    scopus 로고
    • Latent class models for collaborative filtering
    • T. Hofmann and J. Puzicha. Latent class models for collaborative filtering. In Proc. of IJCAI, 1999.
    • (1999) Proc. of IJCAI
    • Hofmann, T.1    Puzicha, J.2
  • 21
    • 79951737281 scopus 로고    scopus 로고
    • A Bayesian approach toward active learning for collaborative filtering
    • R. Jin and L. Si. A bayesian approach toward active learning for collaborative filtering. In UAI, 2004.
    • (2004) UAI
    • Jin, R.1    Si, L.2
  • 22
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30-37, 2009.
    • (2009) Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 23
    • 77956304837 scopus 로고    scopus 로고
    • Project aura: Recommendation for the rest of us
    • Presentation at
    • P. Lamere and S. Green. Project aura: recommendation for the rest of us. Presentation at Sun JavaOne Conference, 2008.
    • (2008) Sun JavaOne Conference
    • Lamere, P.1    Green, S.2
  • 25
    • 77954641643 scopus 로고    scopus 로고
    • A contextual-bandit approach to personalized news article recommendation
    • L. Li, W. Chu, J. Langford, and R. Schapire. A contextual-bandit approach to personalized news article recommendation. In WWW, 2010.
    • (2010) WWW
    • Li, L.1    Chu, W.2    Langford, J.3    Schapire, R.4
  • 26
    • 79952384747 scopus 로고    scopus 로고
    • Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms
    • L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms. In WSDM, 2011.
    • (2011) WSDM
    • Li, L.1    Chu, W.2    Langford, J.3    Wang, X.4
  • 27
    • 77956210502 scopus 로고    scopus 로고
    • Exploitation and exploration in a performance based contextual advertising system
    • W. Li, X. Wang, R. Zhang, Y. Cui, J. Mao, and R. Jin. Exploitation and exploration in a performance based contextual advertising system. In SIGKDD, 2010.
    • (2010) SIGKDD
    • Li, W.1    Wang, X.2    Zhang, R.3    Cui, Y.4    Mao, J.5    Jin, R.6
  • 28
    • 57349097660 scopus 로고    scopus 로고
    • Eigenrank: A ranking-oriented approach to collaborative filtering
    • N. Liu and Q. Yang. Eigenrank: a ranking-oriented approach to collaborative filtering. In SIGIR, 2008.
    • (2008) SIGIR
    • Liu, N.1    Yang, Q.2
  • 29
    • 0029194949 scopus 로고
    • Pointing the way: Active collaborative filtering
    • D. Maltz and K. Ehrlich. Pointing the way: active collaborative filtering. In CHI, 1995.
    • (1995) CHI
    • Maltz, D.1    Ehrlich, K.2
  • 31
    • 77954605272 scopus 로고    scopus 로고
    • Learning preferences of new users in recommender systems: An information theoretic approach
    • A. Rashid, G. Karypis, and J. Riedl. Learning preferences of new users in recommender systems: an information theoretic approach. ACM SIGKDD Explorations Newsletter, 2008.
    • (2008) ACM SIGKDD Explorations Newsletter
    • Rashid, A.1    Karypis, G.2    Riedl, J.3
  • 36
    • 84866632656 scopus 로고    scopus 로고
    • Adaptive diversification of recommendation results via latent factor portfolio
    • Y. Shi, X. Zhao, J. Wang, M. Larson, and A. Hanjalic. Adaptive diversification of recommendation results via latent factor portfolio. In SIGIR, 2012.
    • (2012) SIGIR
    • Shi, Y.1    Zhao, X.2    Wang, J.3    Larson, M.4    Hanjalic, A.5
  • 37
    • 79958846996 scopus 로고    scopus 로고
    • Exploring compact reinforcement-learning representations with linear regression
    • T. Walsh, I. Szita, C. Diuk, and M. Littman. Exploring compact reinforcement-learning representations with linear regression. In UAI, 2009.
    • (2009) UAI
    • Walsh, T.1    Szita, I.2    Diuk, C.3    Littman, M.4
  • 38
    • 33750345680 scopus 로고    scopus 로고
    • Unifying user-based and item-based collaborative filtering approaches by similarity fusion
    • J. Wang, A. P. de Vries, and M. J. T. Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In SIGIR, 2006.
    • (2006) SIGIR
    • Wang, J.1    De Vries, A.P.2    Reinders, M.J.T.3
  • 39
    • 72449155619 scopus 로고    scopus 로고
    • Portfolio theory of information retrieval
    • J. Wang and J. Zhu. Portfolio theory of information retrieval. In SIGIR, 2009.
    • (2009) SIGIR
    • Wang, J.1    Zhu, J.2
  • 40
    • 48349104603 scopus 로고    scopus 로고
    • Cofirank-maximum margin matrix factorization for collaborative ranking
    • M. Weimer, A. Karatzoglou, Q. Le, A. Smola, et al Cofirank-maximum margin matrix factorization for collaborative ranking. In NIPS, 2007.
    • (2007) NIPS
    • Weimer, M.1    Karatzoglou, A.2    Le, Q.3    Smola, A.4
  • 41
    • 80052119372 scopus 로고    scopus 로고
    • Functional matrix factorizations for cold-start recommendation
    • K. Zhou, S. Yang, and H. Zha. Functional matrix factorizations for cold-start recommendation. In SIGIR, 2011.
    • (2011) SIGIR
    • Zhou, K.1    Yang, S.2    Zha, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.