-
1
-
-
79959517565
-
Human fatty liver disease: old questions and new insights
-
Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science. 2011; 332: 1519-23.
-
(2011)
Science
, vol.332
, pp. 1519-1523
-
-
Cohen, J.C.1
Horton, J.D.2
Hobbs, H.H.3
-
2
-
-
77649337140
-
Nonalcoholic fatty liver disease: pathology and pathogenesis
-
Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol. 2010; 5: 145-71.
-
(2010)
Annu Rev Pathol
, vol.5
, pp. 145-171
-
-
Tiniakos, D.G.1
Vos, M.B.2
Brunt, E.M.3
-
3
-
-
84912031921
-
Pathogenesis and therapeutic approaches for non-alcoholic fatty liver disease
-
Yoon HJ, Cha BS. Pathogenesis and therapeutic approaches for non-alcoholic fatty liver disease. World J Hepatol. 2014; 6: 800-11.
-
(2014)
World J Hepatol
, vol.6
, pp. 800-811
-
-
Yoon, H.J.1
Cha, B.S.2
-
4
-
-
84866407037
-
Non-alcoholic fatty liver disease (NAFLD) is associated with low level of physical activity: a population-based study
-
Gerber L, Otgonsuren M, Mishra A, et al. Non-alcoholic fatty liver disease (NAFLD) is associated with low level of physical activity: a population-based study. Aliment Pharmacol Ther. 2012; 36: 772-81.
-
(2012)
Aliment Pharmacol Ther
, vol.36
, pp. 772-781
-
-
Gerber, L.1
Otgonsuren, M.2
Mishra, A.3
-
5
-
-
79955564528
-
Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model
-
Rector RS, Uptergrove GM, Morris EM, et al. Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model. Am J Physiol Gastrointest Liver Physiol. 2011; 300: G874-83.
-
(2011)
Am J Physiol Gastrointest Liver Physiol
, vol.300
, pp. G874-G883
-
-
Rector, R.S.1
Uptergrove, G.M.2
Morris, E.M.3
-
6
-
-
84941345328
-
Effect of training intensity on nonalcoholic fatty liver disease
-
Cho J, Kim S, Lee S, et al. Effect of training intensity on nonalcoholic fatty liver disease. Med Sci Sports Exerc. 2015; 47: 1624-34.
-
(2015)
Med Sci Sports Exerc
, vol.47
, pp. 1624-1634
-
-
Cho, J.1
Kim, S.2
Lee, S.3
-
7
-
-
84908377311
-
Exercise training reverses endothelial dysfunction in nonalcoholic fatty liver disease
-
Pugh CJ, Spring VS, Kemp GJ, et al. Exercise training reverses endothelial dysfunction in nonalcoholic fatty liver disease. Am J Physiol Heart Circ Physiol. 2014; 307: H1298-306.
-
(2014)
Am J Physiol Heart Circ Physiol
, vol.307
, pp. H1298-H1306
-
-
Pugh, C.J.1
Spring, V.S.2
Kemp, G.J.3
-
8
-
-
84917708603
-
Irisin, a link among fatty liver disease, physical inactivity and insulin resistance
-
Arias-Loste MT, Ranchal I, Romero-Gómez M, et al. Irisin, a link among fatty liver disease, physical inactivity and insulin resistance. Int J Mol Sci. 2014; 15: 23163-78.
-
(2014)
Int J Mol Sci
, vol.15
, pp. 23163-23178
-
-
Arias-Loste, M.T.1
Ranchal, I.2
Romero-Gómez, M.3
-
9
-
-
58149396950
-
Role of leisure-time physical activity in nonalcoholic fatty liver disease: a population-based study
-
Zelber-Sagi S, Nitzan-Kaluski D, Goldsmith R, et al. Role of leisure-time physical activity in nonalcoholic fatty liver disease: a population-based study. Hepatology. 2008; 48: 1791-8.
-
(2008)
Hepatology
, vol.48
, pp. 1791-1798
-
-
Zelber-Sagi, S.1
Nitzan-Kaluski, D.2
Goldsmith, R.3
-
10
-
-
84922272218
-
Understanding nutritional interventions and physical exercise in non-alcoholic Fatty liver disease
-
Ordonez R, Carbajo-Pescador S, Mauriz JL, et al. Understanding nutritional interventions and physical exercise in non-alcoholic Fatty liver disease. Curr Mol Med. 2015; 15: 3-26.
-
(2015)
Curr Mol Med
, vol.15
, pp. 3-26
-
-
Ordonez, R.1
Carbajo-Pescador, S.2
Mauriz, J.L.3
-
11
-
-
80051545931
-
Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss
-
Hallsworth K, Fattakhova G, Hollingsworth KG, et al. Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut. 2011; 60: 1278-83.
-
(2011)
Gut
, vol.60
, pp. 1278-1283
-
-
Hallsworth, K.1
Fattakhova, G.2
Hollingsworth, K.G.3
-
12
-
-
84884984755
-
Both resistance training and aerobic training reduce hepatic fat content in type 2 diabetic subjects with nonalcoholic fatty liver disease (the RAED2 Randomized Trial)
-
Bacchi E, Negri C, Targher G, et al. Both resistance training and aerobic training reduce hepatic fat content in type 2 diabetic subjects with nonalcoholic fatty liver disease (the RAED2 Randomized Trial). Hepatology. 2013; 58: 1287-95.
-
(2013)
Hepatology
, vol.58
, pp. 1287-1295
-
-
Bacchi, E.1
Negri, C.2
Targher, G.3
-
13
-
-
84898904287
-
Effect of resistance training on non-alcoholic fatty-liver disease a randomized-clinical trial
-
Zelber-Sagi S, Buch A, Yeshua H, et al. Effect of resistance training on non-alcoholic fatty-liver disease a randomized-clinical trial. World J Gastroenterol. 2014; 20: 4382-92.
-
(2014)
World J Gastroenterol
, vol.20
, pp. 4382-4392
-
-
Zelber-Sagi, S.1
Buch, A.2
Yeshua, H.3
-
14
-
-
13944282215
-
Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs
-
Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005; 433: 769-73.
-
(2005)
Nature
, vol.433
, pp. 769-773
-
-
Lim, L.P.1
Lau, N.C.2
Garrett-Engele, P.3
-
15
-
-
79251581020
-
The art of microRNA research
-
Van Rooij E. The art of microRNA research. Circ Res. 2011; 108: 219-34.
-
(2011)
Circ Res
, vol.108
, pp. 219-234
-
-
Van Rooij, E.1
-
17
-
-
84912118983
-
MicroRNAs as controlled systems and controllers in non-alcoholic fatty liver disease
-
Panera N, Gnani D, Crudele A, et al. MicroRNAs as controlled systems and controllers in non-alcoholic fatty liver disease. World J Gastroenterol. 2014; 20: 15079-86.
-
(2014)
World J Gastroenterol
, vol.20
, pp. 15079-15086
-
-
Panera, N.1
Gnani, D.2
Crudele, A.3
-
18
-
-
84938633652
-
Inhibition of miR-29 has a significant lipid-lowering benefit through suppression of lipogenic programs in liver
-
Kurtz CL, Fannin EE, Toth CL, et al. Inhibition of miR-29 has a significant lipid-lowering benefit through suppression of lipogenic programs in liver. Sci Rep. 2015; 5: 12911.
-
(2015)
Sci Rep
, vol.5
, pp. 12911
-
-
Kurtz, C.L.1
Fannin, E.E.2
Toth, C.L.3
-
19
-
-
84928885523
-
Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis
-
Pirola CJ, Fernández Gianotti T, Castaño GO, et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut. 2015; 64: 800-12.
-
(2015)
Gut
, vol.64
, pp. 800-812
-
-
Pirola, C.J.1
Fernández Gianotti, T.2
Castaño, G.O.3
-
20
-
-
84897014065
-
miR-107 orchestrates ER stress induction and lipid accumulation by post-transcriptional regulation of fatty acid synthase in hepatocytes
-
Bhatia H, Verma G, Datta M. miR-107 orchestrates ER stress induction and lipid accumulation by post-transcriptional regulation of fatty acid synthase in hepatocytes. Biochim Biophys Acta. 2014; 1839: 334-43.
-
(2014)
Biochim Biophys Acta
, vol.1839
, pp. 334-343
-
-
Bhatia, H.1
Verma, G.2
Datta, M.3
-
21
-
-
70349393847
-
Differential expression of microRNAs in mouse liver under aberrant energy metabolic status
-
Li S, Chen X, Zhang H, et al. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res. 2009; 50: 1756-65.
-
(2009)
J Lipid Res
, vol.50
, pp. 1756-1765
-
-
Li, S.1
Chen, X.2
Zhang, H.3
-
22
-
-
78650523982
-
miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells
-
Pandey AK, Verma G, Vig S, et al. miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells. Mol Cell Endocrinol. 2011; 332: 125-33.
-
(2011)
Mol Cell Endocrinol
, vol.332
, pp. 125-133
-
-
Pandey, A.K.1
Verma, G.2
Vig, S.3
-
23
-
-
79959845414
-
MicroRNAs 103 and 107 regulate insulin sensitivity
-
Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 2011; 474: 649-53.
-
(2011)
Nature
, vol.474
, pp. 649-653
-
-
Trajkovski, M.1
Hausser, J.2
Soutschek, J.3
-
24
-
-
84876329845
-
MicroRNA-1 and microRNA-206 suppress LXRα-induced lipogenesis in hepatocytes
-
Zhong D, Huang G, Zhang Y, et al. MicroRNA-1 and microRNA-206 suppress LXRα-induced lipogenesis in hepatocytes. Cell Signal. 2013; 25: 1429-37.
-
(2013)
Cell Signal
, vol.25
, pp. 1429-1437
-
-
Zhong, D.1
Huang, G.2
Zhang, Y.3
-
25
-
-
84882573604
-
MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice
-
Miller AM, Gilchrist DS, Nijjar J, et al. MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice. PLoS One. 2013; 8: e72324.
-
(2013)
PLoS One
, vol.8
-
-
Miller, A.M.1
Gilchrist, D.S.2
Nijjar, J.3
-
26
-
-
34249279050
-
MicroRNA-133 controls cardiac hypertrophy
-
Carè A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007; 13: 613-8.
-
(2007)
Nat Med
, vol.13
, pp. 613-618
-
-
Carè, A.1
Catalucci, D.2
Felicetti, F.3
-
27
-
-
77950871530
-
PI3K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA
-
Lin RC, Weeks KL, Gao XM, et al. PI3K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA. Arterioscler Thromb Vasc Biol. 2010; 30: 724-32.
-
(2010)
Arterioscler Thromb Vasc Biol
, vol.30
, pp. 724-732
-
-
Lin, R.C.1
Weeks, K.L.2
Gao, X.M.3
-
28
-
-
84927933369
-
Exercise training promotes cardioprotection through oxygen-sparing action in high-fat fed mice
-
Lund J, Hafstad AD, Boardman NT, et al. Exercise training promotes cardioprotection through oxygen-sparing action in high-fat fed mice. Am J Physiol Heart Circ Physiol. 2015; 308: H823-9.
-
(2015)
Am J Physiol Heart Circ Physiol
, vol.308
, pp. H823-H829
-
-
Lund, J.1
Hafstad, A.D.2
Boardman, N.T.3
-
29
-
-
84899704081
-
An analysis of the global expression of microRNAs in an experimental model of physiological left ventricular hypertrophy
-
Martinelli NC, Cohen CR, Santos KG, et al. An analysis of the global expression of microRNAs in an experimental model of physiological left ventricular hypertrophy. PLoS One. 2014; 9: e93271.
-
(2014)
PLoS One
, vol.9
-
-
Martinelli, N.C.1
Cohen, C.R.2
Santos, K.G.3
-
30
-
-
84893197806
-
The therapeutic potential of miRNAs regulated in settings of physiological cardiac hypertrophy
-
Ooi JY, Bernardo BC, McMullen JR. The therapeutic potential of miRNAs regulated in settings of physiological cardiac hypertrophy. Future Med Chem. 2014; 6: 205-22.
-
(2014)
Future Med Chem
, vol.6
, pp. 205-222
-
-
Ooi, J.Y.1
Bernardo, B.C.2
McMullen, J.R.3
-
31
-
-
79959312396
-
MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats
-
Soci UP, Fernandes T, Hashimoto NY, et al. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics. 2011; 43: 665-73.
-
(2011)
Physiol Genomics
, vol.43
, pp. 665-673
-
-
Soci, U.P.1
Fernandes, T.2
Hashimoto, N.Y.3
-
32
-
-
84924183240
-
Preventing the progression to Type 2 diabetes mellitus in adults at high risk: a systematic review and network meta-analysis of lifestyle, pharmacological and surgical interventions
-
Stevens JW, Khunti K, Harvey R, et al. Preventing the progression to Type 2 diabetes mellitus in adults at high risk: a systematic review and network meta-analysis of lifestyle, pharmacological and surgical interventions. Diabetes Res Clin Pract. 2015; 107: 320-31.
-
(2015)
Diabetes Res Clin Pract
, vol.107
, pp. 320-331
-
-
Stevens, J.W.1
Khunti, K.2
Harvey, R.3
-
33
-
-
84857539784
-
Effect of intracellular lipid accumulation in a new model of non-alcoholic fatty liver disease
-
Chavez-Tapia NC, Rosso N, Tiribelli C. Effect of intracellular lipid accumulation in a new model of non-alcoholic fatty liver disease. BMC Gastroenterol. 2012; 12: 20.
-
(2012)
BMC Gastroenterol
, vol.12
, pp. 20
-
-
Chavez-Tapia, N.C.1
Rosso, N.2
Tiribelli, C.3
-
34
-
-
84866391624
-
Reversion of hepatic steatosis by exercise training in obese mice: the role of sterol regulatory element-binding protein-1c
-
Cintra DE, Ropelle ER, Vitto MF, et al. Reversion of hepatic steatosis by exercise training in obese mice: the role of sterol regulatory element-binding protein-1c. Life Sci. 2012; 91: 395-401.
-
(2012)
Life Sci
, vol.91
, pp. 395-401
-
-
Cintra, D.E.1
Ropelle, E.R.2
Vitto, M.F.3
-
35
-
-
41549166521
-
Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats
-
Rector RS, Thyfault JP, Morris RT, et al. Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats. Am J Physiol Gastrointest Liver Physiol. 2008; 294: G619-26.
-
(2008)
Am J Physiol Gastrointest Liver Physiol
, vol.294
, pp. G619-G626
-
-
Rector, R.S.1
Thyfault, J.P.2
Morris, R.T.3
-
36
-
-
84858311038
-
AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase
-
Bultot L, Guigas B, Von Wilamowitz-Moellendorff A, et al. AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase. Biochem J. 2012; 443: 193-203.
-
(2012)
Biochem J
, vol.443
, pp. 193-203
-
-
Bultot, L.1
Guigas, B.2
Von Wilamowitz-Moellendorff, A.3
-
37
-
-
70449099399
-
Aerobic exercise increases peripheral and hepatic insulin sensitivity in sedentary adolescents
-
Van der Heijden GJ, Toffolo G, Manesso E, et al. Aerobic exercise increases peripheral and hepatic insulin sensitivity in sedentary adolescents. J Clin Endocrinol Metab. 2009; 94: 4292-9.
-
(2009)
J Clin Endocrinol Metab
, vol.94
, pp. 4292-4299
-
-
Van der Heijden, G.J.1
Toffolo, G.2
Manesso, E.3
-
38
-
-
84878665093
-
Proteomic profile of carbonylated proteins in rat liver: exercise attenuated oxidative stress may be involved in fatty liver improvement
-
Hu X, Duan Z, Hu H, et al. Proteomic profile of carbonylated proteins in rat liver: exercise attenuated oxidative stress may be involved in fatty liver improvement. Proteomics. 2013; 13: 1755-64.
-
(2013)
Proteomics
, vol.13
, pp. 1755-1764
-
-
Hu, X.1
Duan, Z.2
Hu, H.3
-
39
-
-
84862700268
-
Exercise and non-alcoholic fatty liver disease: a systematic review and meta-analysis
-
Keating SE, Hackett DA, George J, et al. Exercise and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2012; 57: 157-66.
-
(2012)
J Hepatol
, vol.57
, pp. 157-166
-
-
Keating, S.E.1
Hackett, D.A.2
George, J.3
-
40
-
-
84861573124
-
Randomized trial of exercise effect on intrahepatic triglyceride content and lipid kinetics in nonalcoholic fatty liver disease
-
Sullivan S, Kirk EP, Mittendorfer B, et al. Randomized trial of exercise effect on intrahepatic triglyceride content and lipid kinetics in nonalcoholic fatty liver disease. Hepatol Baltim Md. 2012; 55: 1738-45.
-
(2012)
Hepatol Baltim Md
, vol.55
, pp. 1738-1745
-
-
Sullivan, S.1
Kirk, E.P.2
Mittendorfer, B.3
-
41
-
-
84867068010
-
Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor β-Klotho
-
Fu T, Choi SE, Kim DH, et al. Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor β-Klotho. Proc Natl Acad Sci USA. 2012; 109: 16137-42.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 16137-16142
-
-
Fu, T.1
Choi, S.E.2
Kim, D.H.3
-
42
-
-
84879448114
-
Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver
-
Yamada H, Suzuki K, Ichino N, et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta. 2013; 424: 99-103.
-
(2013)
Clin Chim Acta
, vol.424
, pp. 99-103
-
-
Yamada, H.1
Suzuki, K.2
Ichino, N.3
-
43
-
-
79961025970
-
MicroRNAs in body fluids-the mix of hormones and biomarkers
-
Cortez MA, Bueso-Ramos C, Ferdin J, et al. MicroRNAs in body fluids-the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011; 8: 467-77.
-
(2011)
Nat Rev Clin Oncol
, vol.8
, pp. 467-477
-
-
Cortez, M.A.1
Bueso-Ramos, C.2
Ferdin, J.3
-
44
-
-
84920870572
-
MicroRNA-212 inhibits osteosarcoma cells proliferation and invasion by down-regulation of Sox4
-
Luo XJ, Tang DG, Gao TL, et al. MicroRNA-212 inhibits osteosarcoma cells proliferation and invasion by down-regulation of Sox4. Cell Physiol Biochem. 2014; 34: 2180-8.
-
(2014)
Cell Physiol Biochem
, vol.34
, pp. 2180-2188
-
-
Luo, X.J.1
Tang, D.G.2
Gao, T.L.3
-
45
-
-
84918520481
-
miR-132/212 cluster inhibits the growth of lung cancer xenografts in nude mice
-
Luo J, Meng C, Tang Y, et al. miR-132/212 cluster inhibits the growth of lung cancer xenografts in nude mice. Int J Clin Exp Med. 2014; 7: 4115-22.
-
(2014)
Int J Clin Exp Med
, vol.7
, pp. 4115-4122
-
-
Luo, J.1
Meng, C.2
Tang, Y.3
-
46
-
-
84919430779
-
Upregulation of the miR-212/132 cluster suppresses proliferation of human lung cancer cells
-
Jiang X, Chen X, Chen L, et al. Upregulation of the miR-212/132 cluster suppresses proliferation of human lung cancer cells. Oncol Rep. 2015; 33: 705-12.
-
(2015)
Oncol Rep
, vol.33
, pp. 705-712
-
-
Jiang, X.1
Chen, X.2
Chen, L.3
-
47
-
-
84907690309
-
A potential regulatory loop between Lin28B:miR-212 in androgen-independent prostate cancer
-
Borrego-Diaz E, Powers BC, Azizov V, et al. A potential regulatory loop between Lin28B:miR-212 in androgen-independent prostate cancer. Int J Oncol. 2014; 45: 2421-9.
-
(2014)
Int J Oncol
, vol.45
, pp. 2421-2429
-
-
Borrego-Diaz, E.1
Powers, B.C.2
Azizov, V.3
-
48
-
-
84925284120
-
MiR-212 exerts suppressive effect on SKOV3 ovarian cancer cells through targeting HBEGF
-
Wei LQ, Liang HT, Qin DC, et al. MiR-212 exerts suppressive effect on SKOV3 ovarian cancer cells through targeting HBEGF. Tumour Biol. 2014; 35: 12427-34.
-
(2014)
Tumour Biol
, vol.35
, pp. 12427-12434
-
-
Wei, L.Q.1
Liang, H.T.2
Qin, D.C.3
-
49
-
-
84858777556
-
Epigenetic regulation of miR-212 expression in lung cancer
-
Incoronato M, Urso L, Portela A, et al. Epigenetic regulation of miR-212 expression in lung cancer. PLoS One. 2011; 6: e27722.
-
(2011)
PLoS One
, vol.6
-
-
Incoronato, M.1
Urso, L.2
Portela, A.3
-
50
-
-
84922360838
-
Vascular importance of the miR-212/132 cluster
-
Kumarswamy R, Volkmann I, Beermann J, et al. Vascular importance of the miR-212/132 cluster. Eur Heart J. 2014; 35: 3224-31.
-
(2014)
Eur Heart J
, vol.35
, pp. 3224-3231
-
-
Kumarswamy, R.1
Volkmann, I.2
Beermann, J.3
-
51
-
-
84867009927
-
The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy
-
Ucar A, Gupta SK, Fiedler J, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun. 2012; 3: 1078.
-
(2012)
Nat Commun
, vol.3
, pp. 1078
-
-
Ucar, A.1
Gupta, S.K.2
Fiedler, J.3
-
52
-
-
84901821975
-
FGF21-based pharmacotherapy-potential utility for metabolic disorders
-
Gimeno RE, Moller DE. FGF21-based pharmacotherapy-potential utility for metabolic disorders. Trends Endocrinol Metab. 2014; 25: 303-11.
-
(2014)
Trends Endocrinol Metab
, vol.25
, pp. 303-311
-
-
Gimeno, R.E.1
Moller, D.E.2
-
53
-
-
84901463912
-
Fibroblast growth factor 21: a promising therapeutic target in obesity-related diseases
-
Cheung BM, Deng HB. Fibroblast growth factor 21: a promising therapeutic target in obesity-related diseases. Expert Rev Cardiovasc Ther. 2014; 12: 659-66.
-
(2014)
Expert Rev Cardiovasc Ther
, vol.12
, pp. 659-666
-
-
Cheung, B.M.1
Deng, H.B.2
-
54
-
-
84906928425
-
FGF21 as a stress hormone: the roles of FGF21 in stress adaptation and the treatment of metabolic diseases
-
Kim KH, Lee MS. FGF21 as a stress hormone: the roles of FGF21 in stress adaptation and the treatment of metabolic diseases. Diabetes Metab J. 2014; 38: 245-51.
-
(2014)
Diabetes Metab J
, vol.38
, pp. 245-251
-
-
Kim, K.H.1
Lee, M.S.2
-
55
-
-
84897109882
-
Inventing new medicines: the FGF21 story
-
Kharitonenkov A, Adams AC. Inventing new medicines: the FGF21 story. Mol Metab. 2014; 3: 221-9.
-
(2014)
Mol Metab
, vol.3
, pp. 221-229
-
-
Kharitonenkov, A.1
Adams, A.C.2
-
56
-
-
57349098220
-
Fibroblast growth factor 21 corrects obesity in mice
-
Coskun T, Bina HA, Schneider MA, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008; 149: 6018-27.
-
(2008)
Endocrinology
, vol.149
, pp. 6018-6027
-
-
Coskun, T.1
Bina, H.A.2
Schneider, M.A.3
-
57
-
-
61649127208
-
Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice
-
Xu J, Lloyd DJ, Hale C, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes. 2009; 58: 250-9.
-
(2009)
Diabetes
, vol.58
, pp. 250-259
-
-
Xu, J.1
Lloyd, D.J.2
Hale, C.3
-
58
-
-
70350455732
-
Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models-association with liver and adipose tissue effects
-
Xu J, Stanislaus S, Chinookoswong N, et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models-association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab. 2009; 297: E1105-14.
-
(2009)
Am J Physiol Endocrinol Metab
, vol.297
, pp. E1105-E1114
-
-
Xu, J.1
Stanislaus, S.2
Chinookoswong, N.3
-
59
-
-
84870278211
-
Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes
-
Hecht R, Li YS, Sun J, et al. Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes. PLoS One. 2012; 7: e49345.
-
(2012)
PLoS One
, vol.7
-
-
Hecht, R.1
Li, Y.S.2
Sun, J.3
-
60
-
-
84865442538
-
Long-acting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys
-
Véniant MM, Komorowski R, Chen P, et al. Long-acting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys. Endocrinology. 2012; 153: 4192-203.
-
(2012)
Endocrinology
, vol.153
, pp. 4192-4203
-
-
Véniant, M.M.1
Komorowski, R.2
Chen, P.3
-
61
-
-
84869051421
-
Liraglutide increases FGF-21 activity and insulin sensitivity in high fat diet and adiponectin knockdown induced insulin resistance
-
Yang M, Zhang L, Wang C, et al. Liraglutide increases FGF-21 activity and insulin sensitivity in high fat diet and adiponectin knockdown induced insulin resistance. PLoS One. 2012; 7: e48392.
-
(2012)
PLoS One
, vol.7
-
-
Yang, M.1
Zhang, L.2
Wang, C.3
-
62
-
-
77956519052
-
Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease
-
Yilmaz Y, Eren F, Yonal O, et al. Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease. Eur J Clin Invest. 2010; 40: 887-92.
-
(2010)
Eur J Clin Invest
, vol.40
, pp. 887-892
-
-
Yilmaz, Y.1
Eren, F.2
Yonal, O.3
-
63
-
-
77957359658
-
Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride
-
Li H, Fang Q, Gao F, et al. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J Hepatol. 2010; 53: 934-40.
-
(2010)
J Hepatol
, vol.53
, pp. 934-940
-
-
Li, H.1
Fang, Q.2
Gao, F.3
-
64
-
-
80052845230
-
Circulating fibroblast growth factor 21 levels are closely associated with hepatic fat content: a cross-sectional study
-
Yan H, Xia M, Chang X, et al. Circulating fibroblast growth factor 21 levels are closely associated with hepatic fat content: a cross-sectional study. PLoS One. 2011; 6: e24895.
-
(2011)
PLoS One
, vol.6
-
-
Yan, H.1
Xia, M.2
Chang, X.3
-
65
-
-
77955474305
-
Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease
-
Dushay J, Chui PC, Gopalakrishnan GS, et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology. 2010; 139: 456-63.
-
(2010)
Gastroenterology
, vol.139
, pp. 456-463
-
-
Dushay, J.1
Chui, P.C.2
Gopalakrishnan, G.S.3
-
66
-
-
84877149547
-
Acute exercise induces FGF21 expression in mice and in healthy humans
-
Kim KH, Kim SH, Min YK, et al. Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS One. 2013; 8: e63517.
-
(2013)
PLoS One
, vol.8
-
-
Kim, K.H.1
Kim, S.H.2
Min, Y.K.3
-
67
-
-
84861655836
-
Exercise increases serum fibroblast growth factor 21 (FGF21) levels
-
Cuevas-Ramos D, Almeda-Valdés P, Meza-Arana CE, et al. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One. 2012; 7: e38022.
-
(2012)
PLoS One
, vol.7
-
-
Cuevas-Ramos, D.1
Almeda-Valdés, P.2
Meza-Arana, C.E.3
|