메뉴 건너뛰기




Volumn 54, Issue 6, 2016, Pages 3248-3264

Support Tensor Machines for Classification of Hyperspectral Remote Sensing Imagery

Author keywords

Classification; dimensionality reduction; feature extraction; hyperspectral; support tensor machine (STM); support vector machine (SVM); tensor

Indexed keywords

AGRICULTURAL MACHINERY; CLUSTERING ALGORITHMS; EXTRACTION; FEATURE EXTRACTION; IMAGE CLASSIFICATION; INDEPENDENT COMPONENT ANALYSIS; PRINCIPAL COMPONENT ANALYSIS; REMOTE SENSING; SPACE OPTICS; SPECTROSCOPY; SUPPORT VECTOR MACHINES; TENSORS;

EID: 84955602136     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2016.2514404     Document Type: Article
Times cited : (153)

References (58)
  • 1
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances in techniques for hyperspectral image processing
    • 6. Plaza et al. Sep.
    • 6. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113, no. 1, pp. 110-122, Sep. 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.1 , pp. 110-122
  • 2
    • 84871844243 scopus 로고    scopus 로고
    • Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi river and its tributaries in Minnesota
    • Mar.
    • L. G. Olmanson, P. L. Brezonik, M. E. Bauer, "Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi river and its tributaries in Minnesota," Remote Sens. Environ., vol. 130, pp. 254-265, Mar. 2013.
    • (2013) Remote Sens. Environ. , vol.130 , pp. 254-265
    • Olmanson, L.G.1    Brezonik, P.L.2    Bauer, M.E.3
  • 4
    • 0031228124 scopus 로고    scopus 로고
    • Opportunities and limitations for image-based remote sensing in precision crop management
    • Sep.
    • M. S. Moran, Y. Inoue, E. M. Barnes, "Opportunities and limitations for image-based remote sensing in precision crop management," Remote Sens. Environ., vol. 61, no. 3, pp. 319-346, Sep. 1997.
    • (1997) Remote Sens. Environ. , vol.61 , Issue.3 , pp. 319-346
    • Moran, M.S.1    Inoue, Y.2    Barnes, E.M.3
  • 5
    • 0034161563 scopus 로고    scopus 로고
    • Integrating contextual information with per-pixel classification for improved land cover classification
    • Mar.
    • J. Stuckens, P. R. Coppin, M. E. Bauer, "Integrating contextual information with per-pixel classification for improved land cover classification," Remote Sens. Environ., vol. 71, no. 3, pp. 282-296, Mar. 2000.
    • (2000) Remote Sens. Environ. , vol.71 , Issue.3 , pp. 282-296
    • Stuckens, J.1    Coppin, P.R.2    Bauer, M.E.3
  • 6
    • 25844497537 scopus 로고    scopus 로고
    • Land cover classification and change analysis of the Twin Cities (Minnesota) metropolitan area by Multitemporal Landsat remote sensing
    • Oct.
    • F. Yuan, K. E. Sawaya, B. C. Loeffelholz, M. E. Bauer, "Land cover classification and change analysis of the Twin Cities (Minnesota) metropolitan area by Multitemporal Landsat remote sensing," Remote Sens. Environ., vol. 98, no. 2/3, pp. 317-328, Oct. 2005.
    • (2005) Remote Sens. Environ. , vol.98 , Issue.2-3 , pp. 317-328
    • Yuan, F.1    Sawaya, K.E.2    Loeffelholz, B.C.3    Bauer, M.E.4
  • 8
    • 57049102289 scopus 로고    scopus 로고
    • Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection,"
    • Jan.
    • A. Brenning, "Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection," Remote Sens. Environ., vol. 113, no. 1, pp. 239-247, Jan. 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.1 , pp. 239-247
    • Brenning, A.1
  • 9
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Mar.
    • J. Ham, C. Yangchi, M. M. Crawford, J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Yangchi, C.2    Crawford, M.M.3    Ghosh, J.4
  • 10
    • 31344453556 scopus 로고    scopus 로고
    • Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (randomForest)
    • Feb.
    • R. L. Lawrence, S. D. Wood, R. L. Sheley, "Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (randomForest)," Remote Sens. Environ., vol. 100, no. 3, pp. 356-362, Feb. 2006.
    • (2006) Remote Sens. Environ. , vol.100 , Issue.3 , pp. 356-362
    • Lawrence, R.L.1    Wood, S.D.2    Sheley, R.L.3
  • 11
    • 0028980239 scopus 로고
    • Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon
    • May
    • J. B. Adams et al., "Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon," Remote Sens. Environ., vol. 52, no. 2, pp. 137-154, May 1995.
    • (1995) Remote Sens. Environ. , vol.52 , Issue.2 , pp. 137-154
    • Adams, J.B.1
  • 12
    • 35649021821 scopus 로고    scopus 로고
    • Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data
    • Dec.
    • U. Heiden, K. Segl, S. Roessner, H. Kaufmann, "Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data," Remote Sens. Environ., vol. 111, no. 4, pp. 537-552, Dec. 2007.
    • (2007) Remote Sens. Environ. , vol.111 , Issue.4 , pp. 537-552
    • Heiden, U.1    Segl, K.2    Roessner, S.3    Kaufmann, H.4
  • 13
    • 0037211218 scopus 로고    scopus 로고
    • Subpixel mapping of snow cover in forests by optical remote sensing
    • Jan.
    • D. Vikhamar and R. Solberg, "Subpixel mapping of snow cover in forests by optical remote sensing," Remote Sens. Environ., vol. 84, no. 1, pp. 69-82, Jan. 2003.
    • (2003) Remote Sens. Environ. , vol.84 , Issue.1 , pp. 69-82
    • Vikhamar, D.1    Solberg, R.2
  • 14
    • 32244435216 scopus 로고    scopus 로고
    • Fuzzy learning vector quantization for hyperspectral coastal vegetation classification
    • Feb.
    • A. M. Filippi and J. R. Jensen, "Fuzzy learning vector quantization for hyperspectral coastal vegetation classification," Remote Sens. Environ., vol. 100, no. 4, pp. 512-530, Feb. 2006.
    • (2006) Remote Sens. Environ. , vol.100 , Issue.4 , pp. 512-530
    • Filippi, A.M.1    Jensen, J.R.2
  • 15
    • 84866074921 scopus 로고    scopus 로고
    • Heathland conservation status mapping through integration of hyperspectral mixture analysis and decision tree classifiers
    • Nov.
    • S. Delalieux et al., "Heathland conservation status mapping through integration of hyperspectral mixture analysis and decision tree classifiers," Remote Sens. Environ., vol. 126, pp. 222-231, Nov. 2012.
    • (2012) Remote Sens. Environ. , vol.126 , pp. 222-231
    • Delalieux, S.1
  • 16
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • Jul.
    • J. C. Harsanyi and C.-I. Chang, "Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779-785, Jul. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.-I.2
  • 17
    • 0032635034 scopus 로고    scopus 로고
    • Classification of multisource and hyperspectral data based on decision fusion
    • May
    • J. A. Benediktsson and I. Kanellopoulos, "Classification of multisource and hyperspectral data based on decision fusion," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 3, pp. 1367-1377, May 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.3 , pp. 1367-1377
    • Benediktsson, J.A.1    Kanellopoulos, I.2
  • 18
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Oct.
    • Y. Chen, N. M. Nasrabadi, T. D. Tran, "Hyperspectral image classification using dictionary-based sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973-3985, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 19
    • 33746885881 scopus 로고    scopus 로고
    • A support vector method for anomaly detection in hyperspectral imagery
    • Aug.
    • A. Banerjee, P. Burlina, C. Diehl, "A support vector method for anomaly detection in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 8, pp. 2282-2291, Aug. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.8 , pp. 2282-2291
    • Banerjee, A.1    Burlina, P.2    Diehl, C.3
  • 20
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Oct.
    • T. S. Furey et al., "Support vector machine classification and validation of cancer tissue samples using microarray expression data," Bioinformatics, vol. 16, no. 10, pp. 906-914, Oct. 2000.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1
  • 22
    • 79951950272 scopus 로고    scopus 로고
    • Support vector machines in remote sensing: A review
    • May
    • G. Mountrakis, J. Im, C. Ogole, "Support vector machines in remote sensing: A review," ISPRS J. Photogramm., vol. 66, pp. 247-259, May 2011.
    • (2011) ISPRS J. Photogramm. , vol.66 , pp. 247-259
    • Mountrakis, G.1    Im, J.2    Ogole, C.3
  • 23
    • 4544272407 scopus 로고    scopus 로고
    • Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification
    • Oct.
    • G. M. Foody and A. Mathur, "Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification," Remote Sens. Environ., vol. 93, no. 1/2, pp. 107-117, Oct. 2004.
    • (2004) Remote Sens. Environ. , vol.93 , Issue.1-2 , pp. 107-117
    • Foody, G.M.1    Mathur, A.2
  • 24
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 25
    • 84871748730 scopus 로고    scopus 로고
    • An SVM ensemble approach combining spectral, structural, semantic features for the classification of highresolution remotely sensed imagery
    • Jan.
    • X. Huang and L. Zhang, "An SVM ensemble approach combining spectral, structural, semantic features for the classification of highresolution remotely sensed imagery," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 257-272, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 257-272
    • Huang, X.1    Zhang, L.2
  • 26
    • 84880603835 scopus 로고    scopus 로고
    • Support vector regression and synthetically mixed training data for quantifying urban land cover
    • Oct.
    • A. Okujeni, S. van der Linden, L. Tits, B. Somers, P. Hostert, "Support vector regression and synthetically mixed training data for quantifying urban land cover," Remote Sens. Environ., vol. 137, pp. 184-197, Oct. 2013.
    • (2013) Remote Sens. Environ. , vol.137 , pp. 184-197
    • Okujeni, A.1    Linden Der SVan2    Tits, L.3    Somers, B.4    Hostert, P.5
  • 28
    • 84859784358 scopus 로고    scopus 로고
    • Locality-preserving dimensionality reduction and classification for hyperspectral image analysis
    • Apr.
    • W. Li, S. Prasad, J. E. Fowler, L. M. Bruce, "Locality-preserving dimensionality reduction and classification for hyperspectral image analysis," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1185-1198, Apr. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.4 , pp. 1185-1198
    • Li, W.1    Prasad, S.2    Fowler, J.E.3    Bruce, L.M.4
  • 29
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semisupervised classification of remote-sensing images
    • Nov.
    • L. Bruzzone, M. Chi, M. Marconcini, "A novel transductive SVM for semisupervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363-3373, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 30
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Aug.
    • Y. Tarabalka, J. A. Benediktsson, J. Chanussot, "Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973-2987, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 31
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Nov.
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, J. R. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 32
    • 84901857500 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization
    • Oct.
    • M. Khodadadzadeh et al., "Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6298-6314, Oct. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.10 , pp. 6298-6314
    • Khodadadzadeh, M.1
  • 34
    • 79957460116 scopus 로고    scopus 로고
    • Using active learning to adapt remote sensing image classifiers
    • Sep.
    • D. Tuia, E. Pasolli, W. J. Emery, "Using active learning to adapt remote sensing image classifiers," Remote Sens. Environ., vol. 115, no. 9, pp. 2232-2242, Sep. 2011.
    • (2011) Remote Sens. Environ. , vol.115 , Issue.9 , pp. 2232-2242
    • Tuia, D.1    Pasolli, E.2    Emery, W.J.3
  • 35
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Jun.
    • D. Tuia, M. Volpi, L. Copa, M. Kanevski, J. Munoz-Mari, "A survey of active learning algorithms for supervised remote sensing image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 606-617, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 37
    • 81855166877 scopus 로고    scopus 로고
    • Maximum margin multisurface support tensor machines with application to image classification and segmentation
    • Jan.
    • Z. Zhang and T.W. S. Chow, "Maximum margin multisurface support tensor machines with application to image classification and segmentation," Expert Syst. Appl., vol. 39, no. 1, pp. 849-860, Jan. 2012.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.1 , pp. 849-860
    • Zhang, Z.1    Chow, T.W.S.2
  • 38
    • 84878311477 scopus 로고    scopus 로고
    • A linear support higher-order tensor machine for classification
    • Jul.
    • Z. Hao, L. He, B. Chen, X. Yang, "A linear support higher-order tensor machine for classification," IEEE Trans. Image Process., vol. 22, no. 7, pp. 2911-2920, Jul. 2013.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.7 , pp. 2911-2920
    • Hao, Z.1    He, L.2    Chen, B.3    Yang, X.4
  • 39
    • 84864284487 scopus 로고    scopus 로고
    • Higher rank support tensor machines for visual recognition
    • Dec.
    • I. Kotsia, W. Guo, I. Patras, "Higher rank support tensor machines for visual recognition," Pattern Recognit., vol. 45, no. 12, pp. 4192-4203, Dec. 2012.
    • (2012) Pattern Recognit. , vol.45 , Issue.12 , pp. 4192-4203
    • Kotsia, I.1    Guo, W.2    Patras, I.3
  • 40
    • 38749143022 scopus 로고    scopus 로고
    • MPCA: Multilinear principal component analysis of tensor objects
    • Jan.
    • H. Lu, K. N. Plataniotis, A. N. Venetsanopoulos, "MPCA: Multilinear principal component analysis of tensor objects," IEEE Trans. Neural Netw., vol. 19, no. 1, pp. 18-39, Jan. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.1 , pp. 18-39
    • Lu, H.1    Plataniotis, K.N.2    Venetsanopoulos, A.N.3
  • 41
    • 0003450304 scopus 로고    scopus 로고
    • Ph.D. dissertation Departement Elektrotechniek, Katholike Univ. Leuven, Leuven, Belgium
    • L. D. Lathauwer, "Signal processing based on multilinear algebra," Ph.D. dissertation, Departement Elektrotechniek, Katholike Univ. Leuven, Leuven, Belgium, 1997.
    • (1997) Signal Processing Based on Multilinear Algebra
    • Lathauwer, L.D.1
  • 42
    • 0034144758 scopus 로고    scopus 로고
    • A multilinear singular value decomposition
    • Apr.
    • L. D. Lathauwer, B. D. Moor, J. Vandewalle, "A multilinear singular value decomposition," SIAM J. Matrix Anal. Appl., vol. 21, no. 4, pp. 1253-1278, Apr. 2000.
    • (2000) SIAM J. Matrix Anal. Appl. , vol.21 , Issue.4 , pp. 1253-1278
    • Lathauwer, L.D.1    Moor, B.D.2    Vandewalle, J.3
  • 43
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • Sep.
    • T. G. Kolda and B. W. Bader, "Tensor decompositions and applications," SIAM Rev., vol. 51, no. 3, pp. 455-500, Sep. 2009.
    • (2009) SIAM Rev. , vol.51 , Issue.3 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 44
    • 79952194000 scopus 로고    scopus 로고
    • A survey of multilinear subspace learning for tensor data
    • Jul.
    • H. Lu, K. N. Plataniotis, A. N. Venetsanopoulos, "A survey of multilinear subspace learning for tensor data," Pattern Recognit., vol. 44, no. 7, pp. 1540-1551, Jul. 2011.
    • (2011) Pattern Recognit. , vol.44 , Issue.7 , pp. 1540-1551
    • Lu, H.1    Plataniotis, K.N.2    Venetsanopoulos, A.N.3
  • 45
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Jan.
    • C. Huang, L. S. Davis, J. R. G. Townshend, "An assessment of support vector machines for land cover classification," Int. J. Remote Sens., vol. 23, no. 5, pp. 725-749, Jan. 2002.
    • (2002) Int. J. Remote Sens. , vol.23 , Issue.5 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 47
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik, "Support vector networks," Mach. Learn., vol. 20, pp. 273-297, 1995.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 49
    • 79957491414 scopus 로고    scopus 로고
    • Noise reduction of hyperspectral images using kernel non-negative Tucker decomposition
    • Jun.
    • A. Karami, M. Yazdi, A. Z. Asli, "Noise reduction of hyperspectral images using kernel non-negative Tucker decomposition," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 487-493, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 487-493
    • Karami, A.1    Yazdi, M.2    Asli, A.Z.3
  • 50
    • 45849101292 scopus 로고    scopus 로고
    • Noise removal from hyperspectral images by multidimensional filtering
    • Jul.
    • D. Letexier and S. Bourennane, "Noise removal from hyperspectral images by multidimensional filtering," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 7, pp. 2061-2069, Jul. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.7 , pp. 2061-2069
    • Letexier, D.1    Bourennane, S.2
  • 51
    • 63149112633 scopus 로고    scopus 로고
    • Dimensionality reduction based on tensor modeling for classification methods
    • Apr.
    • N. Renard and S. Bourennane, "Dimensionality reduction based on tensor modeling for classification methods," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 4, pp. 1123-1131, Apr. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.4 , pp. 1123-1131
    • Renard, N.1    Bourennane, S.2
  • 54
    • 33746893801 scopus 로고    scopus 로고
    • Human gait recognition with matrix representation
    • Jul.
    • D. Xu et al., "Human gait recognition with matrix representation," IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 7, pp. 896-903, Jul. 2006.
    • (2006) IEEE Trans. Circuits Syst. Video Technol. , vol.16 , Issue.7 , pp. 896-903
    • Xu, D.1
  • 55
    • 33847716314 scopus 로고    scopus 로고
    • Multilinear discriminant analysis for face recognition
    • Jan.
    • S. Yan et al., "Multilinear discriminant analysis for face recognition," IEEE Trans. Image Process., vol. 16, no. 1, pp. 212-220, Jan. 2007.
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.1 , pp. 212-220
    • Yan, S.1
  • 56
    • 36048992886 scopus 로고    scopus 로고
    • General tensor discriminant analysis and gabor features for gait recognition
    • Oct.
    • D. Tao, X. Li, X. Wu, S. J. Maybank, "General tensor discriminant analysis and gabor features for gait recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 10, pp. 1700-1715, Oct. 2007.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.10 , pp. 1700-1715
    • Tao, D.1    Li, X.2    Wu, X.3    Maybank, S.J.4
  • 57
    • 84878133525 scopus 로고    scopus 로고
    • Feature extraction of hyperspectral image cubes using three-dimensional gray-level cooccurrence
    • Jun.
    • F. Tsai and J.-S. Lai, "Feature extraction of hyperspectral image cubes using three-dimensional gray-level cooccurrence," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 6, pp. 3504-3513, Jun. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.6 , pp. 3504-3513
    • Tsai, F.1    Lai, J.-S.2
  • 58
    • 84894370515 scopus 로고    scopus 로고
    • A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas
    • Apr.
    • X. Huang, Q. Lu, L. Zhang, "A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas," ISPRS J. Photogramm., vol. 90, pp. 36-48, Apr. 2014.
    • (2014) ISPRS J. Photogramm. , vol.90 , pp. 36-48
    • Huang, X.1    Lu, Q.2    Zhang, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.