메뉴 건너뛰기




Volumn 56, Issue 1, 2016, Pages 12-20

Feasibility of Active Machine Learning for Multiclass Compound Classification

Author keywords

[No Author keywords available]

Indexed keywords

ITERATIVE METHODS; MACHINE LEARNING;

EID: 84955472530     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/acs.jcim.5b00332     Document Type: Article
Times cited : (42)

References (41)
  • 1
    • 85124125604 scopus 로고
    • Heterogeneous Uncertainty Sampling for Supervised Learning
    • New Brunswick, NJ, July 10-13; Cohen, W. W. and Hirsh, H. Morgan Kaufmann Publishers: San Francisco, CA
    • Lewis, D. D. and Catlett, J. Heterogeneous Uncertainty Sampling for Supervised Learning. In Proceedings of the International Conference on Machine Learning, New Brunswick, NJ, July 10-13; Cohen, W. W. and Hirsh, H., Eds.; Morgan Kaufmann Publishers: San Francisco, CA, 1994; pp 148-156.
    • (1994) Proceedings of the International Conference on Machine Learning , pp. 148-156
    • Lewis, D.D.1    Catlett, J.2
  • 3
    • 84873596567 scopus 로고    scopus 로고
    • Synthesis Lectures on Artificial Intelligence and Machine Learning; Morgan & Claypool: San Rafael, CA
    • Settles, B. Active Learning; Synthesis Lectures on Artificial Intelligence and Machine Learning; Morgan & Claypool: San Rafael, CA, 2012.
    • (2012) Active Learning
    • Settles, B.1
  • 7
    • 84896061502 scopus 로고    scopus 로고
    • Active Learning for Teaching a Robot Grounded Relational Symbols
    • Beijing, China, August 3-9; Rossi, F. AAAI Press: Menlo Park, CA
    • Kulick, J.; Toussaint, M.; Lang, T.; Lopes, M. Active Learning for Teaching a Robot Grounded Relational Symbols. In Proceedings of the Int. Joint Conf. on Artificial Intelligence, Beijing, China, August 3-9; Rossi, F., Ed.; AAAI Press: Menlo Park, CA, 2013.
    • (2013) Proceedings of the Int. Joint Conf. on Artificial Intelligence
    • Kulick, J.1    Toussaint, M.2    Lang, T.3    Lopes, M.4
  • 9
    • 75149162532 scopus 로고    scopus 로고
    • Active Learning for Human Protein-Protein Interaction Prediction
    • Mohamed, T. P.; Carbonell, J. G.; Ganapathiraju, M. K. Active Learning for Human Protein-Protein Interaction Prediction BMC Bioinf. 2010, 11, 1-9 10.1186/1471-2105-11-S1-S57
    • (2010) BMC Bioinf. , vol.11 , pp. 1-9
    • Mohamed, T.P.1    Carbonell, J.G.2    Ganapathiraju, M.K.3
  • 10
    • 33750331973 scopus 로고    scopus 로고
    • Multi-class Ensemble-Based Active Learning
    • Berlin, Germany, September 18-22; Fürnkranz, J. Scheffer, T. Spiliopoulou, M. Springer: Berlin, Germany
    • Körner, C.; Wrobel, S. Multi-class Ensemble-Based Active Learning. In Proceedings of the European Conference on Machine Learning, Berlin, Germany, September 18-22; Fürnkranz, J.; Scheffer, T.; Spiliopoulou, M., Eds.; Springer: Berlin, Germany, 2006; pp 687-694.
    • (2006) Proceedings of the European Conference on Machine Learning , pp. 687-694
    • Körner, C.1    Wrobel, S.2
  • 11
    • 70450192673 scopus 로고    scopus 로고
    • Active Learning for Large Multi-Class Problems
    • Miami, Florida, June 20-25; IEEE Computer Society: Piscataway, NJ
    • Jain, P.; Kapoor, A. Active Learning for Large Multi-Class Problems. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Miami, Florida, June 20-25; IEEE Computer Society: Piscataway, NJ, 2009; pp 762-769.
    • (2009) Proceedings of the Conference on Computer Vision and Pattern Recognition , pp. 762-769
    • Jain, P.1    Kapoor, A.2
  • 13
    • 84940005208 scopus 로고    scopus 로고
    • Multi-Class Active Learning by Uncertainty Sampling with Diversity Maximization
    • Yang, Y.; Ma, Z.; Nie, F.; Chang, X.; Hauptmann, A. Multi-Class Active Learning by Uncertainty Sampling with Diversity Maximization Int. J. of Computer Vision 2015, 113, 113-127 10.1007/s11263-014-0781-x
    • (2015) Int. J. of Computer Vision , vol.113 , pp. 113-127
    • Yang, Y.1    Ma, Z.2    Nie, F.3    Chang, X.4    Hauptmann, A.5
  • 14
    • 79956124247 scopus 로고    scopus 로고
    • Active Role for Machine Learning in Drug Development
    • Murphy, R. F. An. Active Role for Machine Learning in Drug Development Nat. Chem. Biol. 2011, 7, 327-330 10.1038/nchembio.576
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 327-330
    • Murphy, R.F.An.1
  • 15
    • 84930211844 scopus 로고    scopus 로고
    • Active-Learning Strategies in Computer-Assisted Drug Discovery
    • Reker, D.; Schneider, G. Active-Learning Strategies in Computer-Assisted Drug Discovery Drug Discovery Today 2015, 20, 458-465 10.1016/j.drudis.2014.12.004
    • (2015) Drug Discovery Today , vol.20 , pp. 458-465
    • Reker, D.1    Schneider, G.2
  • 17
    • 0042868698 scopus 로고    scopus 로고
    • Support Vector Machine Active Learning with Applications to Text Classification
    • Tong, S.; Koller, D. Support Vector Machine Active Learning with Applications to Text Classification J. Mach. Learning Res. 2001, 2, 45-66
    • (2001) J. Mach. Learning Res. , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 22
    • 84925482485 scopus 로고    scopus 로고
    • Introducing the 'Active Search' Method for Iterative Virtual Screening
    • Garnett, R.; Gärtner, T.; Vogt, M.; Bajorath, J. Introducing the 'Active Search' Method for Iterative Virtual Screening J. Comput.-Aided Mol. Des. 2015, 29, 305-314 10.1007/s10822-015-9832-9
    • (2015) J. Comput.-Aided Mol. Des. , vol.29 , pp. 305-314
    • Garnett, R.1    Gärtner, T.2    Vogt, M.3    Bajorath, J.4
  • 23
    • 84901302727 scopus 로고    scopus 로고
    • Efficient Discovery of Responses of Proteins to Compounds using Active Learning
    • Kangas, J.; Naik, A. W.; Murphy, R. F. Efficient Discovery of Responses of Proteins to Compounds using Active Learning BMC Bioinf. 2014, 15, 143-153 10.1186/1471-2105-15-143
    • (2014) BMC Bioinf. , vol.15 , pp. 143-153
    • Kangas, J.1    Naik, A.W.2    Murphy, R.F.3
  • 24
    • 84892906484 scopus 로고    scopus 로고
    • Efficient Modeling and Active Learning Discovery of Biological Responses
    • Naik, A. W.; Kangas, J. D.; Langmead, C. J.; Murphy, R. F. Efficient Modeling and Active Learning Discovery of Biological Responses PLoS One 2013, 8, 1-13 10.1371/journal.pone.0083996
    • (2013) PLoS One , vol.8 , pp. 1-13
    • Naik, A.W.1    Kangas, J.D.2    Langmead, C.J.3    Murphy, R.F.4
  • 25
    • 77952772341 scopus 로고    scopus 로고
    • Extended-Connectivity Fingerprints
    • Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints J. Chem. Inf. Model. 2010, 50, 742-754 10.1021/ci100050t
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 28
    • 33749265864 scopus 로고    scopus 로고
    • Active Learning via Transductive Experimental Design
    • Pittsburgh, Pennsylvania, June 25-29; Cohen, W. W. Moore, A. ACM: New York, NY
    • Yu, K.; Bi, J.; Tresp, V. Active Learning via Transductive Experimental Design. In Proceedings of the Int. Conf. on Machine Learning, Pittsburgh, Pennsylvania, June 25-29; Cohen, W. W.; Moore, A., Eds.; ACM: New York, NY, 2006.
    • (2006) Proceedings of the Int. Conf. on Machine Learning
    • Yu, K.1    Bi, J.2    Tresp, V.3
  • 29
    • 14344265134 scopus 로고    scopus 로고
    • Active Learning Using Pre-Clustering
    • Banff, Alberta, July 4-8; Brodley, C. E. ACM: New York, NY
    • Nguyen, H.; Smeulders, A. Active Learning Using Pre-Clustering. In Proceedings of the Int. Conf. on Machine Learning, Banff, Alberta, July 4-8; Brodley, C. E., Ed.; ACM: New York, NY, 2004; pp 623-630.
    • (2004) Proceedings of the Int. Conf. on Machine Learning , pp. 623-630
    • Nguyen, H.1    Smeulders, A.2
  • 30
    • 40149096977 scopus 로고    scopus 로고
    • Stopping Criterion for Active Learning
    • Vlachos, A. A. Stopping Criterion for Active Learning Comput. Speech Lang. 2008, 22, 295-312 10.1016/j.csl.2007.12.001
    • (2008) Comput. Speech Lang. , vol.22 , pp. 295-312
    • Vlachos, A.A.1
  • 31
    • 56749117943 scopus 로고    scopus 로고
    • In Defense of One-vs-All Classification
    • Rifkin, R.; Klautau, A. In Defense of One-vs-All Classification J. Mach. Learning Res. 2004, 5, 101-141
    • (2004) J. Mach. Learning Res. , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 32
    • 0002595663 scopus 로고    scopus 로고
    • Boosting the Margin: A New Explanation for the Effectiveness of Voting methods
    • Nashville, TE, July 8-12; Fisher, D. H. Morgan Kaufmann: Nashville, TN
    • Schapire, R. E.; Freund, Y.; Barlett, P.; Lee, W. S. Boosting the Margin: A New Explanation for the Effectiveness of Voting methods. In Proceedings of the Int. Conf. on Machine Learning, Nashville, TE, July 8-12; Fisher, D. H., Ed.; Morgan Kaufmann: Nashville, TN, 1997; pp 322-330.
    • (1997) Proceedings of the Int. Conf. on Machine Learning , pp. 322-330
    • Schapire, R.E.1    Freund, Y.2    Barlett, P.3    Lee, W.S.4
  • 35
    • 84896958072 scopus 로고    scopus 로고
    • The Valence State Combination Model: A Generic Framework for Handling Tautomers and Protonation States
    • Urbaczek, S.; Kolodzik, A.; Rarey, M. The Valence State Combination Model: A Generic Framework for Handling Tautomers and Protonation States J. Chem. Inf. Model. 2014, 54, 756-766 10.1021/ci400724v
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 756-766
    • Urbaczek, S.1    Kolodzik, A.2    Rarey, M.3
  • 36
    • 84955496088 scopus 로고    scopus 로고
    • accessed Dec 12
    • ChemAxon Ltd., JKlustor. http://www.chemaxon.com/products/jklustor/ (accessed Dec 12, 2014).
    • (2014) JKlustor
    • ChemAxon Ltd.1
  • 38
    • 33750991346 scopus 로고    scopus 로고
    • Benchmarking Sets for Molecular Docking
    • Huang, N.; Shoichet, B. K.; Irwin, J. J. Benchmarking Sets for Molecular Docking J. Med. Chem. 2006, 49, 6789-6801 10.1021/jm0608356
    • (2006) J. Med. Chem. , vol.49 , pp. 6789-6801
    • Huang, N.1    Shoichet, B.K.2    Irwin, J.J.3
  • 39
    • 41349122416 scopus 로고    scopus 로고
    • Optimization of CAMD Techniques 3. Virtual Screening Enrichment Studies: A Help or Hindrance in Tool Selection?
    • Good, A.; Oprea, T. Optimization of CAMD Techniques 3. Virtual Screening Enrichment Studies: A Help or Hindrance in Tool Selection? J. Comput.-Aided Mol. Des. 2008, 22, 169-178 10.1007/s10822-007-9167-2
    • (2008) J. Comput.-Aided Mol. Des. , vol.22 , pp. 169-178
    • Good, A.1    Oprea, T.2
  • 40
    • 84866038973 scopus 로고    scopus 로고
    • Active Spectral Clustering via Iterative Uncertainty Reduction
    • In, Beijing, China, August 12-16; Yang, Q. Agarwal, D. Pei, J. ACM: New York, NY, USA
    • Wauthier, F. L.; Jojic, N.; Jordan, M. I. Active Spectral Clustering via Iterative Uncertainty Reduction. In Proceedings of the Int. Conf. on Knowledge Discovery and Data Mining, Beijing, China, August 12-16; Yang, Q.; Agarwal, D.; Pei, J., Eds.; ACM: New York, NY, USA, 2012; pp 1339-1347.
    • (2012) Proceedings of the Int. Conf. on Knowledge Discovery and Data Mining , pp. 1339-1347
    • Wauthier, F.L.1    Jojic, N.2    Jordan, M.I.3
  • 41
    • 2942534529 scopus 로고    scopus 로고
    • Active Semi-Supervision for Pairwise Constrained Clustering
    • Lake Buena Vista, Florida, April 22-24; Berry, M. W. Dayal, U. Kamath, C. Skillicorn, D. B. SIAM: Philadelphia, PA
    • Basu, S.; Banjeree, A.; Mooney, E.; Banerjee, A.; Mooney, R. J. Active Semi-Supervision for Pairwise Constrained Clustering. In Proceedings of the Int. Conf. on Data Mining, Lake Buena Vista, Florida, April 22-24; Berry, M. W.; Dayal, U.; Kamath, C.; Skillicorn, D. B., Eds.; SIAM: Philadelphia, PA, 2004; pp 333-344.
    • (2004) Proceedings of the Int. Conf. on Data Mining , pp. 333-344
    • Basu, S.1    Banjeree, A.2    Mooney, E.3    Banerjee, A.4    Mooney, R.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.