메뉴 건너뛰기




Volumn 15, Issue 1, 2014, Pages

Efficient discovery of responses of proteins to compounds using active learning

Author keywords

Active learning; Computational biology; Drug development; Drug discovery; Machine learning; Polypharmacology

Indexed keywords

BIOINFORMATICS; DRUG PRODUCTS; EXPERIMENTS; LEARNING SYSTEMS;

EID: 84901302727     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-15-143     Document Type: Article
Times cited : (31)

References (33)
  • 1
    • 7744243992 scopus 로고    scopus 로고
    • Bioisosterism: a rational approach in drug design
    • 10.1021/cr950066q, 11848856
    • Patani GA, LaVoie EJ. Bioisosterism: a rational approach in drug design. Chem Rev 1996, 96(8):3147-3176. 10.1021/cr950066q, 11848856.
    • (1996) Chem Rev , vol.96 , Issue.8 , pp. 3147-3176
    • Patani, G.A.1    LaVoie, E.J.2
  • 4
    • 0029902763 scopus 로고    scopus 로고
    • Computational methods for biomolecular docking
    • Lengauer T, Rarey M. Computational methods for biomolecular docking. Curr Opin Struc Biol 1996, 6:402-406.
    • (1996) Curr Opin Struc Biol , vol.6 , pp. 402-406
    • Lengauer, T.1    Rarey, M.2
  • 5
    • 77957899529 scopus 로고    scopus 로고
    • Advances and challenges in protein-ligand docking
    • Huang S-Y, Zou X. Advances and challenges in protein-ligand docking. Intl J Mol Sci 2010, 11:3016-3034.
    • (2010) Intl J Mol Sci , vol.11 , pp. 3016-3034
    • Huang, S.-Y.1    Zou, X.2
  • 6
    • 54949110209 scopus 로고    scopus 로고
    • Developing and validating predictive decision tree models from mining chemical structural fingerprints and high-throughput screening data in PubChem
    • Han L, Wang Y, Bryant SH. Developing and validating predictive decision tree models from mining chemical structural fingerprints and high-throughput screening data in PubChem. BMC Bioinf 2008, 9:401.
    • (2008) BMC Bioinf , vol.9 , pp. 401
    • Han, L.1    Wang, Y.2    Bryant, S.H.3
  • 7
    • 75849133755 scopus 로고    scopus 로고
    • A novel method for mining highly imbalanced high-throughput screening data in PubChem
    • 10.1093/bioinformatics/btp589, 2788930, 19825798
    • Li Q, Wang Y, Bryant SH. A novel method for mining highly imbalanced high-throughput screening data in PubChem. Bioinformatics 2009, 25:3310-3316. 10.1093/bioinformatics/btp589, 2788930, 19825798.
    • (2009) Bioinformatics , vol.25 , pp. 3310-3316
    • Li, Q.1    Wang, Y.2    Bryant, S.H.3
  • 9
    • 79956124247 scopus 로고    scopus 로고
    • An active role for machine learning in drug development
    • 10.1038/nchembio.576, 21587249
    • Murphy RF. An active role for machine learning in drug development. Nat Chem Biol 2011, 7(6):327-330. 10.1038/nchembio.576, 21587249.
    • (2011) Nat Chem Biol , vol.7 , Issue.6 , pp. 327-330
    • Murphy, R.F.1
  • 12
    • 79958831734 scopus 로고    scopus 로고
    • Associating drugs, targets and clinical outcomes into an integrated network affords a New platform for computer-aided drug repurposing
    • 3266123, 22287994
    • Oprea TI, Nielsen SK, Ursu O, Yang JJ, Taboureau O, Mathias SL, Kouskoumvekaki L, Sklar LA, Bologa CG. Associating drugs, targets and clinical outcomes into an integrated network affords a New platform for computer-aided drug repurposing. Mol Inform 2011, 30(2-3):100-111. 3266123, 22287994.
    • (2011) Mol Inform , vol.30 , Issue.2-3 , pp. 100-111
    • Oprea, T.I.1    Nielsen, S.K.2    Ursu, O.3    Yang, J.J.4    Taboureau, O.5    Mathias, S.L.6    Kouskoumvekaki, L.7    Sklar, L.A.8    Bologa, C.G.9
  • 13
    • 0035342428 scopus 로고    scopus 로고
    • Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule
    • 10.1002/1097-0134(20010501)43:2<217::AID-PROT1032>3.0.CO;2-G, 11276090
    • Chen YZ, Zhi DG. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 2001, 43(2):217-226. 10.1002/1097-0134(20010501)43:2<217::AID-PROT1032>3.0.CO;2-G, 11276090.
    • (2001) Proteins , vol.43 , Issue.2 , pp. 217-226
    • Chen, Y.Z.1    Zhi, D.G.2
  • 14
    • 77649157271 scopus 로고    scopus 로고
    • Automated discovery of novel drug formulations using predictive iterated high throughput experimentation
    • 10.1371/journal.pone.0008546, 2797296, 20049327
    • Caschera F, Gazzola G, Bedau MA, Bosch Moreno C, Buchanan A, Cawse J, Packard N, Hanczyc MM. Automated discovery of novel drug formulations using predictive iterated high throughput experimentation. PLoS One 2010, 5(1):e8546. 10.1371/journal.pone.0008546, 2797296, 20049327.
    • (2010) PLoS One , vol.5 , Issue.1
    • Caschera, F.1    Gazzola, G.2    Bedau, M.A.3    Bosch Moreno, C.4    Buchanan, A.5    Cawse, J.6    Packard, N.7    Hanczyc, M.M.8
  • 16
    • 10244230983 scopus 로고    scopus 로고
    • Reconstruction of gene networks using Bayesian learning and manipulation experiments
    • 10.1093/bioinformatics/bth337, 15180938
    • Pournara I, Wernisch L. Reconstruction of gene networks using Bayesian learning and manipulation experiments. Bioinformatics 2004, 20(17):2934-2942. 10.1093/bioinformatics/bth337, 15180938.
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 2934-2942
    • Pournara, I.1    Wernisch, L.2
  • 17
    • 10044229345 scopus 로고    scopus 로고
    • Active learning with support vector machine applied to gene expression data for cancer classification
    • 10.1021/ci049810a, 15554662
    • Liu Y. Active learning with support vector machine applied to gene expression data for cancer classification. J Chem Inf Comput Sci 2004, 44(6):1936-1941. 10.1021/ci049810a, 15554662.
    • (2004) J Chem Inf Comput Sci , vol.44 , Issue.6 , pp. 1936-1941
    • Liu, Y.1
  • 18
    • 1642336155 scopus 로고    scopus 로고
    • Functional genomic hypothesis generation and experimentation by a robot scientist
    • 10.1038/nature02236, 14724639
    • King RD, Whelan KE, Jones FM, Reiser PG, Bryant CH, Muggleton SH, Kell DB, Oliver SG. Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 2004, 427(6971):247-252. 10.1038/nature02236, 14724639.
    • (2004) Nature , vol.427 , Issue.6971 , pp. 247-252
    • King, R.D.1    Whelan, K.E.2    Jones, F.M.3    Reiser, P.G.4    Bryant, C.H.5    Muggleton, S.H.6    Kell, D.B.7    Oliver, S.G.8
  • 19
    • 66349125451 scopus 로고    scopus 로고
    • Predicting and understanding the stability of G-quadruplexes
    • 10.1093/bioinformatics/btp210, 2687964, 19478012
    • Stegle O, Payet L, Mergny J-L, MacKay DJC, Huppert JL. Predicting and understanding the stability of G-quadruplexes. Bioinformatics 2009, 25:i374-i382. 10.1093/bioinformatics/btp210, 2687964, 19478012.
    • (2009) Bioinformatics , vol.25
    • Stegle, O.1    Payet, L.2    Mergny, J.-L.3    MacKay, D.J.C.4    Huppert, J.L.5
  • 20
    • 70349671213 scopus 로고    scopus 로고
    • Predicting positive p53 cancer rescue regions using Most Informative Positive (MIP) active learning
    • 10.1371/journal.pcbi.1000498, 2742196, 19756158
    • Danziger SA, Baronio R, Ho L, Hall L, Salmon K, Hatfield GW, Kaiser P, Lathrop RH. Predicting positive p53 cancer rescue regions using Most Informative Positive (MIP) active learning. PLoS Comput Biol 2009, 5(9):e1000498. 10.1371/journal.pcbi.1000498, 2742196, 19756158.
    • (2009) PLoS Comput Biol , vol.5 , Issue.9
    • Danziger, S.A.1    Baronio, R.2    Ho, L.3    Hall, L.4    Salmon, K.5    Hatfield, G.W.6    Kaiser, P.7    Lathrop, R.H.8
  • 21
    • 75149162532 scopus 로고    scopus 로고
    • Active learning for human protein-protein interaction prediction
    • Mohamed TP, Carbonell JG, Ganapathiraju MK. Active learning for human protein-protein interaction prediction. BMC Bioinf 2010, 11(Suppl 1):S57.
    • (2010) BMC Bioinf , vol.11 , Issue.SUPPL. 1
    • Mohamed, T.P.1    Carbonell, J.G.2    Ganapathiraju, M.K.3
  • 22
    • 0037365194 scopus 로고    scopus 로고
    • Active learning with support vector machines in the drug discovery process
    • 10.1021/ci025620t, 12653536
    • Warmuth MK, Liao J, Ratsch G, Mathieson M, Putta S, Lemmen C. Active learning with support vector machines in the drug discovery process. J Chem Inf Comput Sci 2003, 43(2):667-673. 10.1021/ci025620t, 12653536.
    • (2003) J Chem Inf Comput Sci , vol.43 , Issue.2 , pp. 667-673
    • Warmuth, M.K.1    Liao, J.2    Ratsch, G.3    Mathieson, M.4    Putta, S.5    Lemmen, C.6
  • 24
    • 0001287271 scopus 로고    scopus 로고
    • Regression Shrinkage and Selection via the Lasso
    • Tibshirani R. Regression Shrinkage and Selection via the Lasso. J Roy Stat Soc B Met 1996, 58(1):267-288.
    • (1996) J Roy Stat Soc B Met , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 25
    • 0000012198 scopus 로고    scopus 로고
    • Selective sampling for example-based word sense disambiguation
    • Fujii A, Inui K, Tokunaga T, Tanaka H. Selective sampling for example-based word sense disambiguation. Comput Linguist 1998, 24(4):573-597.
    • (1998) Comput Linguist , vol.24 , Issue.4 , pp. 573-597
    • Fujii, A.1    Inui, K.2    Tokunaga, T.3    Tanaka, H.4
  • 26
    • 84892906484 scopus 로고    scopus 로고
    • Efficient modeling and active learning discovery of biological responses
    • 10.1371/journal.pone.0083996, 3866149, 24358322
    • Naik AW, Kangas JD, Langmead CJ, Murphy RF. Efficient modeling and active learning discovery of biological responses. PLoS One 2013, 8(12):e83996. 10.1371/journal.pone.0083996, 3866149, 24358322.
    • (2013) PLoS One , vol.8 , Issue.12
    • Naik, A.W.1    Kangas, J.D.2    Langmead, C.J.3    Murphy, R.F.4
  • 27
    • 0000695404 scopus 로고
    • Information-based objective functions for active data
    • MacKay DJC. Information-based objective functions for active data. Neural Comput 1992, 4(4):590-604.
    • (1992) Neural Comput , vol.4 , Issue.4 , pp. 590-604
    • MacKay, D.J.C.1
  • 29
    • 54949108677 scopus 로고    scopus 로고
    • PubChem: integrated platform of small molecules and biological activities
    • Bolton EE, Wang Y, Thiessen PA, Bryant SH. PubChem: integrated platform of small molecules and biological activities. Annu Rep Comput Chem 2008, 4:217-241.
    • (2008) Annu Rep Comput Chem , vol.4 , pp. 217-241
    • Bolton, E.E.1    Wang, Y.2    Thiessen, P.A.3    Bryant, S.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.