메뉴 건너뛰기




Volumn 8, Issue 11, 2015, Pages 13062-13080

Biohydrogen production from lignocellulosic biomass: Technology and sustainability

Author keywords

Biofuels; Biohydrogen; Life cycle assessment; Lignocellulosic biomass; Sustainability; Technology

Indexed keywords


EID: 84955131510     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en81112357     Document Type: Article
Times cited : (127)

References (141)
  • 1
    • 33847270801 scopus 로고    scopus 로고
    • Ethanol as an alternative fuel from agricultural, industrial and urban residues
    • Prasad, S.; Singh, A.; Joshi, H.C. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recycl. 2007, 50, 1-39.
    • (2007) Resour. Conserv. Recycl , vol.50 , pp. 1-39
    • Prasad, S.1    Singh, A.2    Joshi, H.C.3
  • 2
    • 34547822482 scopus 로고    scopus 로고
    • Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India
    • Prasad, S.; Singh, A.; Joshi, H.C. Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy Fuels 2007, 21, 2415-2420.
    • (2007) Energy Fuels , vol.21 , pp. 2415-2420
    • Prasad, S.1    Singh, A.2    Joshi, H.C.3
  • 3
    • 74549151753 scopus 로고    scopus 로고
    • A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
    • Pant, D.; Van Bogaert, G.; Diels, L.; Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 2010, 101, 1533-1543.
    • (2010) Bioresour. Technol. , vol.101 , pp. 1533-1543
    • Pant, D.1    Van Bogaert, G.2    Diels, L.3    Vanbroekhoven, K.4
  • 4
    • 78650817486 scopus 로고    scopus 로고
    • An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects
    • Pant, D.; Singh, A.; van Bogaert, G.; Gallego, Y.A.; Diels, L.; Vanbroekhoven, K. An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects. Renew. Sustain. Energy Rev. 2011, 15, 1305-1313.
    • (2011) Renew. Sustain. Energy Rev. , vol.15 , pp. 1305-1313
    • Pant, D.1    Singh, A.2    Van Bogaert, G.3    Gallego, Y.A.4    Diels, L.5    Vanbroekhoven, K.6
  • 5
    • 70349512717 scopus 로고    scopus 로고
    • A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take
    • Singh, A.; Smyth, B.M.; Murphy, J.D. A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take. Renew. Sustain. Energy Rev. 2010, 14, 277-288.
    • (2010) Renew. Sustain. Energy Rev. , vol.14 , pp. 277-288
    • Singh, A.1    Smyth, B.M.2    Murphy, J.D.3
  • 6
    • 77949873264 scopus 로고    scopus 로고
    • Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives
    • Singh, A.; Pant, D.; Korres, N.E.; Nizami, A.; Prasad, S.; Murphy, J.D. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives. Bioresour. Technol. 2010, 101, 5003-5012.
    • (2010) Bioresour. Technol. , vol.101 , pp. 5003-5012
    • Singh, A.1    Pant, D.2    Korres, N.E.3    Nizami, A.4    Prasad, S.5    Murphy, J.D.6
  • 7
    • 77957337703 scopus 로고    scopus 로고
    • Renewable fuels from algae: An answer to debatable land based fuels
    • Singh, A.; Nigam, P.S.; Murphy, J.D. Renewable fuels from algae: An answer to debatable land based fuels. Bioresour. Technol. 2011, 102, 10-16.
    • (2011) Bioresour. Technol. , vol.102 , pp. 10-16
    • Singh, A.1    Nigam, P.S.2    Murphy, J.D.3
  • 8
    • 64749085304 scopus 로고    scopus 로고
    • Advances in fermentative biohydrogen production: The way forward?
    • Hallenbeck, P.C.; Ghosh, D. Advances in fermentative biohydrogen production: The way forward? Trends Biotechnol. 2009, 27, 287-297.
    • (2009) Trends Biotechnol , vol.27 , pp. 287-297
    • Hallenbeck, P.C.1    Ghosh, D.2
  • 9
    • 58549112568 scopus 로고    scopus 로고
    • The future of hydrogen - Opportunities and challenges
    • Ball, M.; Wietschel, M. The future of hydrogen - Opportunities and challenges. Int. J. Hydrog. Energy 2009, 34, 615-627.
    • (2009) Int. J. Hydrog. Energy , vol.34 , pp. 615-627
    • Ball, M.1    Wietschel, M.2
  • 11
    • 33747081625 scopus 로고    scopus 로고
    • A novel approach for biohydrogen production
    • Kovacs, K.; Maroti, G.; Rakhely, G. A novel approach for biohydrogen production. Int. J. Hydrog. Energy 2006, 31, 1460-1468.
    • (2006) Int. J. Hydrog. Energy , vol.31 , pp. 1460-1468
    • Kovacs, K.1    Maroti, G.2    Rakhely, G.3
  • 12
    • 70349771942 scopus 로고    scopus 로고
    • Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges
    • Ren, N.; Wang, A.; Cao, G.; Xu, J.; Gao, L. Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges. Biotechnol. Adv. 2009, 27, 1051-1060.
    • (2009) Biotechnol. Adv. , vol.27 , pp. 1051-1060
    • Ren, N.1    Wang, A.2    Cao, G.3    Xu, J.4    Gao, L.5
  • 13
    • 0008374127 scopus 로고    scopus 로고
    • Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08
    • Kumar, N.; Das, D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem. 2000, 35, 589-593.
    • (2000) Process Biochem. , vol.35 , pp. 589-593
    • Kumar, N.1    Das, D.2
  • 14
    • 0034789484 scopus 로고    scopus 로고
    • Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate
    • Chen, C.C.; Lin, C.Y.; Chang, J.S. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl. Microbiol. Biotechnol. 2001, 57, 56-64.
    • (2001) Appl. Microbiol. Biotechnol , vol.57 , pp. 56-64
    • Chen, C.C.1    Lin, C.Y.2    Chang, J.S.3
  • 15
    • 0035892791 scopus 로고    scopus 로고
    • Biohydrogen production as a function of pH and substrate concentration
    • Ginkel, S.V.; Sung, S.; Lay, J.J. Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 2001, 35, 4726-4730.
    • (2001) Environ. Sci. Technol. , vol.35 , pp. 4726-4730
    • Ginkel, S.V.1    Sung, S.2    Lay, J.J.3
  • 16
    • 33646168279 scopus 로고    scopus 로고
    • Ethanoligenens harbinense gen. Nov., sp. Nov., isolated from molasses wastewater
    • Xing, D.; Ren, N.; Li, Q.; Lin, M.; Wang, A.; Zhao, L. Ethanoligenens harbinense gen. nov., sp. nov., isolated from molasses wastewater. Int. J. Syst. Evolut. Microbiol. 2006, 56, 755-760.
    • (2006) Int. J. Syst. Evolut. Microbiol. , vol.56 , pp. 755-760
    • Xing, D.1    Ren, N.2    Li, Q.3    Lin, M.4    Wang, A.5    Zhao, L.6
  • 17
    • 31144462864 scopus 로고    scopus 로고
    • Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production
    • Wang, L.; Zhou, Q.; Li, F. Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production. Biomass Bioenergy 2006, 30, 177-182.
    • (2006) Biomass Bioenergy , vol.30 , pp. 177-182
    • Wang, L.1    Zhou, Q.2    Li, F.3
  • 18
    • 77951023446 scopus 로고    scopus 로고
    • Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16
    • Ren, N.; Cao, G.; Guo, W.; Wang, A.; Zhu, Y.; Liu, B.; Xu, J. Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16. Int. J. Hydrog. Energy 2010, 35, 2708-2712.
    • (2010) Int. J. Hydrog. Energy , vol.35 , pp. 2708-2712
    • Ren, N.1    Cao, G.2    Guo, W.3    Wang, A.4    Zhu, Y.5    Liu, B.6    Xu, J.7
  • 20
    • 39849089733 scopus 로고    scopus 로고
    • Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus
    • Ntaikou, I.; Gavala, H.N.; Kornaros, M.; Lyberatos, G. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. Int. J. Hydrog. Energy 2008, 33, 1153-1163.
    • (2008) Int. J. Hydrog. Energy , vol.33 , pp. 1153-1163
    • Ntaikou, I.1    Gavala, H.N.2    Kornaros, M.3    Lyberatos, G.4
  • 21
    • 30944443553 scopus 로고    scopus 로고
    • Bio-hydrogen production from waste materials
    • Kapdan, I.K.; Kargi, F. Bio-hydrogen production from waste materials. Enzym. Microb. Technol. 2006, 38, 569-582.
    • (2006) Enzym. Microb. Technol. , vol.38 , pp. 569-582
    • Kapdan, I.K.1    Kargi, F.2
  • 22
    • 71549143842 scopus 로고    scopus 로고
    • Biomass-based hydrogen production: A review and analysis
    • Kalinci, Y.; Hepbasli, A.; Dincer, I. Biomass-based hydrogen production: A review and analysis. Int. J. Hydrog. Energy 2009, 34, 8799-8817.
    • (2009) Int. J. Hydrog. Energy , vol.34 , pp. 8799-8817
    • Kalinci, Y.1    Hepbasli, A.2    Dincer, I.3
  • 23
    • 34147187340 scopus 로고    scopus 로고
    • Improving the yield from fermentative hydrogen production
    • Kraemer, J.T.; Bagley, D.M. Improving the yield from fermentative hydrogen production. Biotechnol. Lett. 2007, 29, 685-695.
    • (2007) Biotechnol. Lett. , vol.29 , pp. 685-695
    • Kraemer, J.T.1    Bagley, D.M.2
  • 24
    • 58549092968 scopus 로고    scopus 로고
    • Factors influencing fermentative hydrogen production: A review
    • Wang, J.; Wan, W. Factors influencing fermentative hydrogen production: A review. Int. J. Hydrog. Energy 2009, 34, 799-811.
    • (2009) Int. J. Hydrog. Energy , vol.34 , pp. 799-811
    • Wang, J.1    Wan, W.2
  • 27
    • 43049167957 scopus 로고    scopus 로고
    • Developments and constraints in fermentative hydrogen production
    • Bartacek, J.; Zabranska, J.; Lens, P.N. Developments and constraints in fermentative hydrogen production. Biofuels Bioprod. Biorefining 2007, 1, 201-214.
    • (2007) Biofuels Bioprod. Biorefining , vol.1 , pp. 201-214
    • Bartacek, J.1    Zabranska, J.2    Lens, P.N.3
  • 29
    • 52349116345 scopus 로고    scopus 로고
    • Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste
    • Kim, S.H.; Shin, H.S. Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste. Int. J. Hydrog. Energy 2008, 33, 5266-5274.
    • (2008) Int. J. Hydrog. Energy , vol.33 , pp. 5266-5274
    • Kim, S.H.1    Shin, H.S.2
  • 30
    • 67650697750 scopus 로고    scopus 로고
    • Hydrogen fermentation of food waste without inoculum addition
    • Kim, D.H.; Kim, S.H.; Shin, H.S. Hydrogen fermentation of food waste without inoculum addition. Enzyme Microb. Technol. 2009, 45, 181-187.
    • (2009) Enzyme Microb. Technol. , vol.45 , pp. 181-187
    • Kim, D.H.1    Kim, S.H.2    Shin, H.S.3
  • 31
    • 33750997299 scopus 로고    scopus 로고
    • Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system
    • Ren, N.; Li, J.; Li, B.; Wang, Y.; Liu, S. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int. J. Hydrog. Energy 2006, 31, 2147-2157.
    • (2006) Int. J. Hydrog. Energy , vol.31 , pp. 2147-2157
    • Ren, N.1    Li, J.2    Li, B.3    Wang, Y.4    Liu, S.5
  • 32
    • 35248835972 scopus 로고    scopus 로고
    • Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR)
    • Li, J.; Li, B.; Zhu, G.; Ren, N.; Bo, L.; He, J. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). Int. J. Hydrog. Energy 2007, 32, 3274-3283.
    • (2007) Int. J. Hydrog. Energy , vol.32 , pp. 3274-3283
    • Li, J.1    Li, B.2    Zhu, G.3    Ren, N.4    Bo, L.5    He, J.6
  • 33
    • 36549029355 scopus 로고    scopus 로고
    • Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities
    • Yang, P.; Zhang, R.; Mcgarvey, J.; Benemann, J. Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int. J. Hydrog. Energy 2007, 32, 4761-4771.
    • (2007) Int. J. Hydrog. Energy , vol.32 , pp. 4761-4771
    • Yang, P.1    Zhang, R.2    Mcgarvey, J.3    Benemann, J.4
  • 34
    • 68349152825 scopus 로고    scopus 로고
    • Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions
    • Azbar, N.; Çetinkaya Dokgöz, F.T.; Keskin, T.; Korkmaz, K.S.; Syed, H.M. Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int. J. Hydrog. Energy 2009, 34, 7441-7447.
    • (2009) Int. J. Hydrog. Energy , vol.34 , pp. 7441-7447
    • Azbar, N.1    Çetinkaya Dokgöz, F.T.2    Keskin, T.3    Korkmaz, K.S.4    Syed, H.M.5
  • 35
    • 0034607692 scopus 로고    scopus 로고
    • Modeling and optimization of anaerobic digested sludge converting starch to hydrogen
    • Lay, J.J. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 2000, 63, 269-278.
    • (2000) Biotechnol. Bioeng. , vol.63 , pp. 269-278
    • Lay, J.J.1
  • 36
    • 0034764035 scopus 로고    scopus 로고
    • Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost
    • PubMed
    • Ueno, Y.; Haruta, S.; Ishii, M.; Igarashi, Y. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol. 2001, 57, 555-562.
    • (2001) Appl. Microbiol. Biotechnol , vol.57 , pp. 555-562
    • Ueno, Y.1    Haruta, S.2    Ishii, M.3    Igarashi, Y.4
  • 37
    • 33646034324 scopus 로고    scopus 로고
    • Fermentative hydrogen production from xylose using anaerobic mixed microflora
    • Lin, C.Y.; Cheng, C.H. Fermentative hydrogen production from xylose using anaerobic mixed microflora. Int. J. Hydrog. Energy 2006, 31, 832-840.
    • (2006) Int. J. Hydrog. Energy , vol.31 , pp. 832-840
    • Lin, C.Y.1    Cheng, C.H.2
  • 38
    • 13544257119 scopus 로고    scopus 로고
    • Continuous fermentative hydrogen production from sucrose and sugarbeet
    • Hussy, I.; Hawkes, F.R.; Dinsdale, R.; Hawkes, D.L. Continuous fermentative hydrogen production from sucrose and sugarbeet. Int. J. Hydrog. Energy 2005, 30, 471-483.
    • (2005) Int. J. Hydrog. Energy , vol.30 , pp. 471-483
    • Hussy, I.1    Hawkes, F.R.2    Dinsdale, R.3    Hawkes, D.L.4
  • 39
    • 33748645145 scopus 로고    scopus 로고
    • Fermentative conversion of sucrose and pineapple waste into hydrogen gas in phosphate-buffered culture seeded with municipal sewage sludge
    • Wang, C.H.; Lin, P.J.; Chang, J.S. Fermentative conversion of sucrose and pineapple waste into hydrogen gas in phosphate-buffered culture seeded with municipal sewage sludge. Process Biochem. 2006, 41, 1353-1358.
    • (2006) Process Biochem. , vol.41 , pp. 1353-1358
    • Wang, C.H.1    Lin, P.J.2    Chang, J.S.3
  • 40
    • 24644466083 scopus 로고    scopus 로고
    • Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR
    • Fan, K.S.; Kan, N.R.; Lay, J.J. Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Bioresour. Technol. 2006, 97, 84-89.
    • (2006) Bioresour. Technol. , vol.97 , pp. 84-89
    • Fan, K.S.1    Kan, N.R.2    Lay, J.J.3
  • 41
    • 0036827182 scopus 로고    scopus 로고
    • Sustainable fermentative hydrogen production: Challenges for process optimisation
    • Hawkes, F.R.; Dinsdale, R.; Hawkes, D.L.; Hussy, I. Sustainable fermentative hydrogen production: Challenges for process optimisation. Int. J. Hydrog. Energy 2002, 27, 1339-1347.
    • (2002) Int. J. Hydrog. Energy , vol.27 , pp. 1339-1347
    • Hawkes, F.R.1    Dinsdale, R.2    Hawkes, D.L.3    Hussy, I.4
  • 42
    • 33846192340 scopus 로고    scopus 로고
    • Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress
    • Hawkes, F.R.; Hussy, I.; Kyazze, G.; Dinsdale, R.; Hawkes, D.L. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrog. Energy 2007, 32, 172-184.
    • (2007) Int. J. Hydrog. Energy , vol.32 , pp. 172-184
    • Hawkes, F.R.1    Hussy, I.2    Kyazze, G.3    Dinsdale, R.4    Hawkes, D.L.5
  • 43
    • 84930091278 scopus 로고    scopus 로고
    • Improvement of energy recovery from cellobiose by thermophillic dark fermentative hydrogen production followed by microbial fuel cell
    • Varanasi, J.L.; Roy, S.; Pandit, S.; Das, D. Improvement of energy recovery from cellobiose by thermophillic dark fermentative hydrogen production followed by microbial fuel cell. Int. J. Hydrog. Energy 2015, 40, 8311-8321.
    • (2015) Int. J. Hydrog. Energy , vol.40 , pp. 8311-8321
    • Varanasi, J.L.1    Roy, S.2    Pandit, S.3    Das, D.4
  • 45
    • 0344896607 scopus 로고    scopus 로고
    • Biohydrogen production: Prospects and limitations to practical application
    • Levin, D. Biohydrogen production: Prospects and limitations to practical application. Int. J. Hydrog. Energy 2004, 29, 173-185.
    • (2004) Int. J. Hydrog. Energy , vol.29 , pp. 173-185
    • Levin, D.1
  • 46
    • 84897926581 scopus 로고    scopus 로고
    • Capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana: An unexpected deviation from the dark fermentation model
    • Dipasquale, L.; D'Ippolito, G.; Fontana, A. Capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana: An unexpected deviation from the dark fermentation model. Int. J. Hydrog. Energy 2014, 39, 4857-4862.
    • (2014) Int. J. Hydrog. Energy , vol.39 , pp. 4857-4862
    • Dipasquale, L.1    D'Ippolito, G.2    Fontana, A.3
  • 48
    • 33846213610 scopus 로고    scopus 로고
    • The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state of the art
    • Basak, N.; Das, D. The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state of the art. World J. Microbiol. Biotechnol. 2007, 23, 31-42.
    • (2007) World J. Microbiol. Biotechnol , vol.23 , pp. 31-42
    • Basak, N.1    Das, D.2
  • 49
    • 64749098287 scopus 로고    scopus 로고
    • Integrating dark and light bio-hydrogen production strategies: Towards the hydrogen economy
    • Redwood, M.D.; Paterson-Beedle, M.; MacAskie, L.E. Integrating dark and light bio-hydrogen production strategies: Towards the hydrogen economy. Rev. Environ. Sci. Biotechnol. 2009, 8, 149-185.
    • (2009) Rev. Environ. Sci. Biotechnol , vol.8 , pp. 149-185
    • Redwood, M.D.1    Paterson-Beedle, M.2    MacAskie, L.E.3
  • 50
    • 57649107180 scopus 로고    scopus 로고
    • An overview of hydrogen production technologies
    • Holladay, J.D.; Hu, J.; King, D.L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244-260.
    • (2009) Catal. Today , vol.139 , pp. 244-260
    • Holladay, J.D.1    Hu, J.2    King, D.L.3    Wang, Y.4
  • 51
    • 60649107293 scopus 로고    scopus 로고
    • Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp
    • Kapdan, I.K.; Kargi, F.; Oztekin, R.; Argun, H. Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. Int. J. Hydrog. Energy 2009, 34, 2201-2207.
    • (2009) Int. J. Hydrog. Energy , vol.34 , pp. 2201-2207
    • Kapdan, I.K.1    Kargi, F.2    Oztekin, R.3    Argun, H.4
  • 52
    • 84859218886 scopus 로고    scopus 로고
    • Hydrogen production from sugar industry wastes using single-stage photofermentation
    • Keskin, T.; Hallenbeck, P.C. Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresour. Technol. 2012, 112, 131-136.
    • (2012) Bioresour. Technol. , vol.112 , pp. 131-136
    • Keskin, T.1    Hallenbeck, P.C.2
  • 53
    • 6944228870 scopus 로고    scopus 로고
    • Improvement of fermentative hydrogen production: Various approaches
    • Nath, K.; Das, D. Improvement of fermentative hydrogen production: Various approaches. Appl. Microbiol. Biotechnol. 2004, 65, 520-529.
    • (2004) Appl. Microbiol. Biotechnol , vol.65 , pp. 520-529
    • Nath, K.1    Das, D.2
  • 54
    • 77950339475 scopus 로고    scopus 로고
    • Enhanced bio-hydrogen production by the combination of dark- and photo-fermentation in batch culture
    • Liu, B.F.; Ren, N.Q.; Xie, G.J.; Ding, J.; Guo, W.Q.; Xing, D.F. Enhanced bio-hydrogen production by the combination of dark- and photo-fermentation in batch culture. Bioresour. Technol. 2010, 101, 5325-5329.
    • (2010) Bioresour. Technol. , vol.101 , pp. 5325-5329
    • Liu, B.F.1    Ren, N.Q.2    Xie, G.J.3    Ding, J.4    Guo, W.Q.5    Xing, D.F.6
  • 55
    • 84947724411 scopus 로고    scopus 로고
    • Wiley & Sons, Inc.: Hoboken, NJ, USA
    • Logan, B.E. Microbial Fuel Cell; Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008.
    • (2008) Microbial Fuel Cell
    • Logan, B.E.1
  • 56
    • 33644938991 scopus 로고    scopus 로고
    • Principle and perspectives of hydrogen production through biocatalyzed electrolysis
    • Rozendal, R.; Hamelers, H.; Euverink, G.; Metz, S.; Buisman, C. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrog. Energy 2006, 31, 1632-1640.
    • (2006) Int. J. Hydrog. Energy , vol.31 , pp. 1632-1640
    • Rozendal, R.1    Hamelers, H.2    Euverink, G.3    Metz, S.4    Buisman, C.5
  • 57
    • 38349159666 scopus 로고    scopus 로고
    • Comparison of biohydrogen production processes
    • Manish, S.; Banerjee, R. Comparison of biohydrogen production processes. Int. J. Hydrog. Energy 2008, 33, 279-286.
    • (2008) Int. J. Hydrog. Energy , vol.33 , pp. 279-286
    • Manish, S.1    Banerjee, R.2
  • 59
    • 84903937631 scopus 로고    scopus 로고
    • A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas
    • Kadier, A.; Simayi, Y.; Kalil, M.S.; Abdeshahian, P.; Hamid, A.A. A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas. Renew. Energy 2014, 71, 466-472.
    • (2014) Renew. Energy , vol.71 , pp. 466-472
    • Kadier, A.1    Simayi, Y.2    Kalil, M.S.3    Abdeshahian, P.4    Hamid, A.A.5
  • 60
    • 84876323449 scopus 로고    scopus 로고
    • Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)
    • Ren, L.; Siegert, M.; Ivanov, I.; Pisciotta, J.M.; Logan, B.E. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs). Bioresour. Technol. 2013, 136, 322-328.
    • (2013) Bioresour. Technol. , vol.136 , pp. 322-328
    • Ren, L.1    Siegert, M.2    Ivanov, I.3    Pisciotta, J.M.4    Logan, B.E.5
  • 61
    • 70349440838 scopus 로고    scopus 로고
    • Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts
    • Hu, H.; Fan, Y.; Liu, H. Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int. J. Hydrog. Energy 2009, 34, 8535-8542.
    • (2009) Int. J. Hydrog. Energy , vol.34 , pp. 8535-8542
    • Hu, H.1    Fan, Y.2    Liu, H.3
  • 62
    • 84866152771 scopus 로고    scopus 로고
    • Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells
    • Lu, L.; Xing, D.; Ren, N.; Logan, B.E. Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells. Bioresour. Technol. 2012, 124, 68-76.
    • (2012) Bioresour. Technol. , vol.124 , pp. 68-76
    • Lu, L.1    Xing, D.2    Ren, N.3    Logan, B.E.4
  • 63
    • 67349179146 scopus 로고    scopus 로고
    • Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell
    • Lu, L.; Ren, N.; Xing, D.; Logan, B.E. Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens. Bioelectron. 2009, 24, 3055-3060.
    • (2009) Biosens. Bioelectron , vol.24 , pp. 3055-3060
    • Lu, L.1    Ren, N.2    Xing, D.3    Logan, B.E.4
  • 64
    • 47049085042 scopus 로고    scopus 로고
    • Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane
    • Call, D.; Logan, B.E. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ. Sci. Technol. 2008, 42, 3401-3406.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 3401-3406
    • Call, D.1    Logan, B.E.2
  • 65
    • 64549127249 scopus 로고    scopus 로고
    • High surface area stainless steel brushes as cathodes in microbial electrolysis cells
    • Call, D.F.; Merrill, M.D.; Logan, B.E. High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environ. Sci. Technol. 2009, 43, 2179-2183.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 2179-2183
    • Call, D.F.1    Merrill, M.D.2    Logan, B.E.3
  • 66
    • 67649577235 scopus 로고    scopus 로고
    • High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells
    • Selembo, P.A.; Perez, J.M.; Lloyd, W.A.; Logan, B.E. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. Int. J. Hydrog. Energy 2009, 34, 5373-5381.
    • (2009) Int. J. Hydrog. Energy , vol.34 , pp. 5373-5381
    • Selembo, P.A.1    Perez, J.M.2    Lloyd, W.A.3    Logan, B.E.4
  • 67
    • 69549128558 scopus 로고    scopus 로고
    • Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells
    • Wang, X.; Cheng, S.; Feng, Y.; Merrill, M.D.; Saito, T.; Logan, B.E. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol. 2009, 43, 6870-6874.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 6870-6874
    • Wang, X.1    Cheng, S.2    Feng, Y.3    Merrill, M.D.4    Saito, T.5    Logan, B.E.6
  • 68
    • 61549120433 scopus 로고    scopus 로고
    • Hydrogen and methane production from swine wastewater using microbial electrolysis cells
    • Wagner, R.C.; Regan, J.M.; Oh, S.-E.; Zuo, Y.; Logan, B.E. Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res. 2009, 43, 1480-1488.
    • (2009) Water Res. , vol.43 , pp. 1480-1488
    • Wagner, R.C.1    Regan, J.M.2    Oh, S.-E.3    Zuo, Y.4    Logan, B.E.5
  • 69
    • 84866148210 scopus 로고    scopus 로고
    • Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes
    • Pisciotta, J.M.; Zaybak, Z.; Call, D.F.; Nam, J.Y.; Logan, B.E. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl. Environ. Microbiol. 2012, 78, 5212-5219.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 5212-5219
    • Pisciotta, J.M.1    Zaybak, Z.2    Call, D.F.3    Nam, J.Y.4    Logan, B.E.5
  • 70
    • 84867098126 scopus 로고    scopus 로고
    • Carbon/iron-based nanorod catalysts for hydrogen production in microbial electrolysis cells
    • Xiao, L.; Wen, Z.; Ci, S.; Chen, J.; He, Z. Carbon/iron-based nanorod catalysts for hydrogen production in microbial electrolysis cells. Nano Energy 2012, 1, 751-756.
    • (2012) Nano Energy , vol.1 , pp. 751-756
    • Xiao, L.1    Wen, Z.2    Ci, S.3    Chen, J.4    He, Z.5
  • 71
    • 77954309281 scopus 로고    scopus 로고
    • Hydrogen production from acetate in a cathode-on-top single-chamber microbial electrolysis cell with a mipor cathode
    • Guo, K.; Tang, X.; Du, Z.; Li, H. Hydrogen production from acetate in a cathode-on-top single-chamber microbial electrolysis cell with a mipor cathode. Biochem. Eng. J. 2010, 51, 48-52.
    • (2010) Biochem. Eng. J , vol.51 , pp. 48-52
    • Guo, K.1    Tang, X.2    Du, Z.3    Li, H.4
  • 72
    • 51349090905 scopus 로고    scopus 로고
    • Hydrogen production using single-chamber membrane-free microbial electrolysis cells
    • Hu, H.; Fan, Y.; Liu, H. Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res. 2008, 42, 4172-4178.
    • (2008) Water Res. , vol.42 , pp. 4172-4178
    • Hu, H.1    Fan, Y.2    Liu, H.3
  • 73
    • 63549116403 scopus 로고    scopus 로고
    • Performance and population analysis of a non-sterile trickle bed reactor inoculated with caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer
    • Van Groenestijn, J.W.; Geelhoed, J.S.; Goorissen, H.P.; Meesters, K.P.; Stams, A.J.; Claassen, P.A. Performance and population analysis of a non-sterile trickle bed reactor inoculated with caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer. Biotechnol. Bioeng. 2009, 102, 1361-1367.
    • (2009) Biotechnol. Bioeng. , vol.102 , pp. 1361-1367
    • Van Groenestijn, J.W.1    Geelhoed, J.S.2    Goorissen, H.P.3    Meesters, K.P.4    Stams, A.J.5    Claassen, P.A.6
  • 74
  • 76
    • 33744478137 scopus 로고    scopus 로고
    • Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70 C)
    • Kotsopoulos, T.A.; Zeng, R.J.; Angelidaki, I. Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70 C). Biotechnol. Bioeng. 2006, 94, 296-302.
    • (2006) Biotechnol. Bioeng. , vol.94 , pp. 296-302
    • Kotsopoulos, T.A.1    Zeng, R.J.2    Angelidaki, I.3
  • 77
    • 67649795292 scopus 로고    scopus 로고
    • Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana
    • De Vrije, T.; Bakker, R.R.; Budde, M.A.; Lai, M.H.; Mars, A.E.; Claassen, P.A. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol. Biofuels 2009, 2, 12.
    • (2009) Biotechnol. Biofuels , vol.2 , pp. 12
    • De Vrije, T.1    Bakker, R.R.2    Budde, M.A.3    Lai, M.H.4    Mars, A.E.5    Claassen, P.A.6
  • 78
    • 0036836415 scopus 로고    scopus 로고
    • Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii
    • Van Niel, E.W.; Budde, M.A.; De Haas, G.; Van der Wal, F.J.; Claassen, P.A.; Stams, A.J. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int. J. Hydrog. Energy 2002, 27, 1391-1398.
    • (2002) Int. J. Hydrog. Energy , vol.27 , pp. 1391-1398
    • Van Niel, E.W.1    Budde, M.A.2    De Haas, G.3    Van Der Wal, F.J.4    Claassen, P.A.5    Stams, A.J.6
  • 79
    • 0017343370 scopus 로고
    • Energy conservation in chemotrophic anaerobic bacteria
    • PubMed
    • Thauer, R.K.; Jungermann, K.; Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 1977, 41, 100-180.
    • (1977) Bacteriol. Rev. , vol.41 , pp. 100-180
    • Thauer, R.K.1    Jungermann, K.2    Decker, K.3
  • 80
    • 24944574228 scopus 로고    scopus 로고
    • Biohydrogen gas production from food processing and domestic wastewaters
    • Vanginkel, S.; Oh, S.; Logan, B. Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydrog. Energy 2005, 30, 1535-1542.
    • (2005) Int. J. Hydrog. Energy , vol.30 , pp. 1535-1542
    • Vanginkel, S.1    Oh, S.2    Logan, B.3
  • 81
    • 33646908831 scopus 로고    scopus 로고
    • Hydrogen and methane production from household solid waste in the two-stage fermentation process
    • Liu, D.; Liu, D.; Zeng, R.J.; Angelidaki, I. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res. 2006, 40, 2230-2236.
    • (2006) Water Res. , vol.40 , pp. 2230-2236
    • Liu, D.1    Liu, D.2    Zeng, R.J.3    Angelidaki, I.4
  • 82
    • 0242678278 scopus 로고    scopus 로고
    • The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production
    • Oh, S.-E.; van Ginkel, S.; Logan, B.E. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ. Sci. Technol. 2003, 37, 5186-5190.
    • (2003) Environ. Sci. Technol. , vol.37 , pp. 5186-5190
    • Oh, S.-E.1    Van Ginkel, S.2    Logan, B.E.3
  • 83
    • 0036827172 scopus 로고    scopus 로고
    • Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane
    • Liang, T.M.; Cheng, S.S.; Wu, K.L. Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane. Int. J. Hydrog. Energy 2002, 27, 1157-1165.
    • (2002) Int. J. Hydrog. Energy , vol.27 , pp. 1157-1165
    • Liang, T.M.1    Cheng, S.S.2    Wu, K.L.3
  • 84
    • 0036836416 scopus 로고    scopus 로고
    • Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range
    • Van Groenestijn, J.W.; Hazewinkel, J.H.; Nienoord, M.; Bussmann, P.J. Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range. Int. J. Hydrog. Energy 2002, 27, 1141-1147.
    • (2002) Int. J. Hydrog. Energy , vol.27 , pp. 1141-1147
    • Van Groenestijn, J.W.1    Hazewinkel, J.H.2    Nienoord, M.3    Bussmann, P.J.4
  • 85
    • 33748551648 scopus 로고    scopus 로고
    • Effect of gas sparging on continuous fermentative hydrogen production
    • Kim, D.H.; Han, S.K.; Kim, S.H.; Shin, H.S. Effect of gas sparging on continuous fermentative hydrogen production. Int. J. Hydrog. Energy 2006, 31, 2158-2169.
    • (2006) Int. J. Hydrog. Energy , vol.31 , pp. 2158-2169
    • Kim, D.H.1    Han, S.K.2    Kim, S.H.3    Shin, H.S.4
  • 86
    • 0036827180 scopus 로고    scopus 로고
    • Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides
    • Koku, H. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int. J. Hydrog. Energy 2002, 27, 1315-1329.
    • (2002) Int. J. Hydrog. Energy , vol.27 , pp. 1315-1329
    • Koku, H.1
  • 87
    • 84923313066 scopus 로고    scopus 로고
    • Investigation of the links between mass transfer conditions, dissolved hydrogen concentration and biohydrogen production by the pure strain Clostridium butyricum CWBI1009
    • Beckers, L.; Masset, J.; Hamilton, C.; Delvigne, F.; Toye, D.; Crine, M.; Thonart, P.; Hiligsmann, S. Investigation of the links between mass transfer conditions, dissolved hydrogen concentration and biohydrogen production by the pure strain Clostridium butyricum CWBI1009. Biochem. Eng. J. 2015, 98, 18-28.
    • (2015) Biochem. Eng. J , vol.98 , pp. 18-28
    • Beckers, L.1    Masset, J.2    Hamilton, C.3    Delvigne, F.4    Toye, D.5    Crine, M.6    Thonart, P.7    Hiligsmann, S.8
  • 89
    • 40749105216 scopus 로고    scopus 로고
    • Pilot study of the influence of stirring and pH on anaerobes converting high-solid organic wastes to hydrogen
    • Chou, C.; Wang, C.; Huang, C.; Lay, J. Pilot study of the influence of stirring and pH on anaerobes converting high-solid organic wastes to hydrogen. Int. J. Hydrog. Energy 2008, 33, 1550-1558.
    • (2008) Int. J. Hydrog. Energy , vol.33 , pp. 1550-1558
    • Chou, C.1    Wang, C.2    Huang, C.3    Lay, J.4
  • 90
    • 84861135306 scopus 로고    scopus 로고
    • The influence of the degree of back-mixing on hydrogen production in an anaerobic fixed-bed reactor
    • Fontes Lima, D.M.; Zaiat, M. The influence of the degree of back-mixing on hydrogen production in an anaerobic fixed-bed reactor. Int. J. Hydrog. Energy 2012, 37, 9630-9635.
    • (2012) Int. J. Hydrog. Energy , vol.37 , pp. 9630-9635
    • Lima, D.M.F.1    Zaiat, M.2
  • 91
    • 84937516586 scopus 로고    scopus 로고
    • Hydrogen production by an enriched photoheterotrophic culture using dark fermentation effluent as substrate: Effect of flushing method, bicarbonate addition, and outdoor-indoor conditions
    • Montiel-Corona, V.; Revah, S.; Morales, M. Hydrogen production by an enriched photoheterotrophic culture using dark fermentation effluent as substrate: Effect of flushing method, bicarbonate addition, and outdoor-indoor conditions. Int. J. Hydrog. Energy 2015, 40, 9096-9105.
    • (2015) Int. J. Hydrog. Energy , vol.40 , pp. 9096-9105
    • Montiel-Corona, V.1    Revah, S.2    Morales, M.3
  • 92
    • 84863610045 scopus 로고    scopus 로고
    • The effect of low pressure and mixing on biological hydrogen production via anaerobic fermentation
    • Clark, I.C.; Zhang, R.H.; Upadhyaya, S.K. The effect of low pressure and mixing on biological hydrogen production via anaerobic fermentation. Int. J. Hydrog. Energy 2012, 37, 11504-11513.
    • (2012) Int. J. Hydrog. Energy , vol.37 , pp. 11504-11513
    • Clark, I.C.1    Zhang, R.H.2    Upadhyaya, S.K.3
  • 94
    • 33744530528 scopus 로고    scopus 로고
    • The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: A two-phase process
    • Gómez, X.; Morán, A.; Cuetos, M.J.; Sánchez, M.E. The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: A two-phase process. J. Power Sources 2006, 157, 727-732.
    • (2006) J. Power Sources , vol.157 , pp. 727-732
    • Gómez, X.1    Morán, A.2    Cuetos, M.J.3    Sánchez, M.E.4
  • 95
    • 62949091234 scopus 로고    scopus 로고
    • Methanogenesis in membraneless microbial electrolysis cells
    • Clauwaert, P.; Verstraete, W. Methanogenesis in membraneless microbial electrolysis cells. Appl. Microbiol. Biotechnol. 2009, 82, 829-836.
    • (2009) Appl. Microbiol. Biotechnol , vol.82 , pp. 829-836
    • Clauwaert, P.1    Verstraete, W.2
  • 96
    • 66249100237 scopus 로고    scopus 로고
    • Direct biological conversion of electrical current into methane by electromethanogenesis
    • Cheng, S.; Xing, D.; Call, D.F.; Logan, B.E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 2009, 43, 3953-3958.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 3953-3958
    • Cheng, S.1    Xing, D.2    Call, D.F.3    Logan, B.E.4
  • 97
    • 77957150606 scopus 로고    scopus 로고
    • Use of novel permeable membrane and air cathodes in acetate microbial fuel cells
    • Pant, D.; van Bogaert, G.; de Smet, M.; Diels, L.; Vanbroekhoven, K. Use of novel permeable membrane and air cathodes in acetate microbial fuel cells. Electrochimica Acta 2010, 55, 7710-7716.
    • (2010) Electrochimica Acta , vol.55 , pp. 7710-7716
    • Pant, D.1    Van Bogaert, G.2    De Smet, M.3    Diels, L.4    Vanbroekhoven, K.5
  • 98
    • 65049084632 scopus 로고    scopus 로고
    • The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells
    • Selembo, P.A.; Merrill, M.D.; Logan, B.E. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J. Power Sour. 2009, 190, 271-278.
    • (2009) J. Power Sour , vol.190 , pp. 271-278
    • Selembo, P.A.1    Merrill, M.D.2    Logan, B.E.3
  • 99
    • 77953564075 scopus 로고    scopus 로고
    • Metabolic engineering to enhance bacterial hydrogen production
    • Maeda, T.; Sanchez-Torres, V.; Wood, T.K. Metabolic engineering to enhance bacterial hydrogen production. Microb. Biotechnol. 2008, 1, 30-39.
    • (2008) Microb. Biotechnol , vol.1 , pp. 30-39
    • Maeda, T.1    Sanchez-Torres, V.2    Wood, T.K.3
  • 100
    • 19444377761 scopus 로고    scopus 로고
    • Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production
    • Morimoto, K.; Kimura, T.; Sakka, K.; Ohmiya, K. Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol. Lett. 2005, 246, 229-234.
    • (2005) FEMS Microbiol. Lett. , vol.246 , pp. 229-234
    • Morimoto, K.1    Kimura, T.2    Sakka, K.3    Ohmiya, K.4
  • 101
    • 42149157325 scopus 로고    scopus 로고
    • Metabolically engineered bacteria for producing hydrogen via fermentation
    • Vardar-Schara, G.; Maeda, T.; Wood, T.K. Metabolically engineered bacteria for producing hydrogen via fermentation. Microb. Biotechnol. 2008, 1, 107-125.
    • (2008) Microb. Biotechnol , vol.1 , pp. 107-125
    • Vardar-Schara, G.1    Maeda, T.2    Wood, T.K.3
  • 102
    • 84856212503 scopus 로고    scopus 로고
    • Improvements in fermentative biological hydrogen production through metabolic engineering
    • Hallenbeck, P.C.; Ghosh, D. Improvements in fermentative biological hydrogen production through metabolic engineering. J. Environ. Manag. 2012, 95, S360-S364.
    • (2012) J. Environ. Manag , vol.95 , pp. S360-S364
    • Hallenbeck, P.C.1    Ghosh, D.2
  • 103
    • 84897422714 scopus 로고    scopus 로고
    • Metabolic engineering of Rhodobacter sphaeroides for improved hydrogen production
    • Ryu, M.-H.; Hull, N.C.; Gomelsky, M. Metabolic engineering of Rhodobacter sphaeroides for improved hydrogen production. Int. J. Hydrog. Energy 2014, 39, 6384-6390.
    • (2014) Int. J. Hydrog. Energy , vol.39 , pp. 6384-6390
    • Ryu, M.-H.1    Hull, N.C.2    Gomelsky, M.3
  • 104
    • 64449084684 scopus 로고    scopus 로고
    • Kinetic models for fermentative hydrogen production: A review
    • Wang, J.; Wan, W. Kinetic models for fermentative hydrogen production: A review. Int. J. Hydrog. Energy 2009, 34, 3313-3323.
    • (2009) Int. J. Hydrog. Energy , vol.34 , pp. 3313-3323
    • Wang, J.1    Wan, W.2
  • 105
    • 84869826767 scopus 로고    scopus 로고
    • Hydrogen and fuel cell technologies for sustainable future
    • Dincer, I. Hydrogen and Fuel Cell Technologies for Sustainable Future. Jordan J. Mech. Ind. Eng. 2008, 2, 1-14.
    • (2008) Jordan J. Mech. Ind. Eng. , vol.2 , pp. 1-14
    • Dincer, I.1
  • 106
    • 84929138458 scopus 로고    scopus 로고
    • Biohydrogen production from microalgae
    • Gupta, V., Tuohy, M., Eds.; Springer: Berlin/Heidelberg, Germany
    • Rathore, D.; Singh, A. Biohydrogen production from microalgae. In Biofuels Technologies Recent Developments; Gupta, V., Tuohy, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 317-333.
    • (2013) Biofuels Technologies Recent Developments , pp. 317-333
    • Rathore, D.1    Singh, A.2
  • 107
    • 3042814102 scopus 로고    scopus 로고
    • Exergetic and thermoeconomic analysis of a 200-kW phosphoric acid fuel cell plant
    • Kwak, H.Y.; Lee, H.S.; Jung, J.Y.; Jeon, J.S.; Park, D.R. Exergetic and thermoeconomic analysis of a 200-kW phosphoric acid fuel cell plant. Fuel 2004, 83, 2087-2094.
    • (2004) Fuel , vol.83 , pp. 2087-2094
    • Kwak, H.Y.1    Lee, H.S.2    Jung, J.Y.3    Jeon, J.S.4    Park, D.R.5
  • 109
    • 79957598384 scopus 로고    scopus 로고
    • Life cycle assessment of biohydrogen production in photosynthetic processes
    • Romagnoli, F.; Blumberga, D.; Pilicka, I. Life cycle assessment of biohydrogen production in photosynthetic processes. Int. J. Hydrog. Energy 2011, 36, 7866-7871.
    • (2011) Int. J. Hydrog. Energy , vol.36 , pp. 7866-7871
    • Romagnoli, F.1    Blumberga, D.2    Pilicka, I.3
  • 110
    • 44749087721 scopus 로고    scopus 로고
    • Dagnija Blumberga Life cycle assessment of hydrogen produced from potato steam peels
    • Djomo, S.N.; Humbert, S. Dagnija Blumberga Life cycle assessment of hydrogen produced from potato steam peels. Int. J. Hydrog. Energy 2008, 33, 3067-3072.
    • (2008) Int. J. Hydrog. Energy , vol.33 , pp. 3067-3072
    • Djomo, S.N.1    Humbert, S.2
  • 111
    • 78650835775 scopus 로고    scopus 로고
    • Comparative life cycle assessment of three biohydrogen pathways
    • Djomo, S.N.; Blumberga, D. Comparative life cycle assessment of three biohydrogen pathways. Bioresour. Technol. 2011, 102, 2684-2694.
    • (2011) Bioresour. Technol. , vol.102 , pp. 2684-2694
    • Djomo, S.N.1    Blumberga, D.2
  • 112
    • 78049406009 scopus 로고    scopus 로고
    • Life cycle inventory analysis of biological hydrogen production by thermophilic and photo fermentation of potato steam peels (PSP)
    • Ochs, D.; Wukovits, W.; Ahrer, W. Life cycle inventory analysis of biological hydrogen production by thermophilic and photo fermentation of potato steam peels (PSP). J. Clean. Prod. 2010, 18, S88-S94.
    • (2010) J. Clean. Prod. , vol.18 , pp. S88-S94
    • Ochs, D.1    Wukovits, W.2    Ahrer, W.3
  • 113
    • 70349459607 scopus 로고    scopus 로고
    • Sequencing batch reactor enhances bacterial hydrolysis of starch promoting continuous bio-hydrogen production from starch feedstock
    • Chen, S.D.; Lo, Y.C.; Lee, K.S.; Huang, T.I.; Chang, J.S. Sequencing batch reactor enhances bacterial hydrolysis of starch promoting continuous bio-hydrogen production from starch feedstock. Int. J. Hydrog. Energy 2009, 34, 8549-8557.
    • (2009) Int. J. Hydrog. Energy , vol.34 , pp. 8549-8557
    • Chen, S.D.1    Lo, Y.C.2    Lee, K.S.3    Huang, T.I.4    Chang, J.S.5
  • 115
    • 63449111235 scopus 로고    scopus 로고
    • Biohydrogen production in a three-phase fluidized bed bioreactor using sewage sludge immobilized by ethylene-vinyl acetate copolymer
    • Lin, C.N.; Wu, S.Y.; Chang, J.S.; Chang, J.S. Biohydrogen production in a three-phase fluidized bed bioreactor using sewage sludge immobilized by ethylene-vinyl acetate copolymer. Bioresour. Technol. 2009, 100, 3298-3301.
    • (2009) Bioresour. Technol. , vol.100 , pp. 3298-3301
    • Lin, C.N.1    Wu, S.Y.2    Chang, J.S.3    Chang, J.S.4
  • 116
    • 77952980363 scopus 로고    scopus 로고
    • Effect of different temperature, initial pH and substrate composition on biohydrogen production from food waste in batch fermentation
    • Yasin Nazlina, H.M.; Aini, R.; Ismail, F.; Zulkhairi, M.; Hassan, M.A. Effect of different temperature, initial pH and substrate composition on biohydrogen production from food waste in batch fermentation. Asian J. Biotechnol. 2009, 1, 42-50.
    • (2009) Asian J. Biotechnol , vol.1 , pp. 42-50
    • Yasin Nazlina, H.M.1    Aini, R.2    Ismail, F.3    Zulkhairi, M.4    Hassan, M.A.5
  • 119
    • 70349213229 scopus 로고    scopus 로고
    • Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered Escherichia coli DJT135
    • Ghosh, D.; Hallenbeck, P.C. Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered Escherichia coli DJT135. Int. J. Hydrog. Energy 2009, 34, 7979-7982.
    • (2009) Int. J. Hydrog. Energy , vol.34 , pp. 7979-7982
    • Ghosh, D.1    Hallenbeck, P.C.2
  • 120
    • 62849119252 scopus 로고    scopus 로고
    • Dark fermentation of ground wheat starch for bio-hydrogen production by fed-batch operation
    • Kargi, F.; Pamukoglu, M.Y. Dark fermentation of ground wheat starch for bio-hydrogen production by fed-batch operation. Int. J. Hydrog. Energy 2009, 34, 2940-2946.
    • (2009) Int. J. Hydrog. Energy , vol.34 , pp. 2940-2946
    • Kargi, F.1    Pamukoglu, M.Y.2
  • 121
    • 84929153973 scopus 로고    scopus 로고
    • Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production
    • Han, W.; Ye, M.; Zhu, A.J.; Zhao, H.T.; Li, Y.F. Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production. Bioresour. Technol. 2015, 191, 24-29.
    • (2015) Bioresour. Technol. , vol.191 , pp. 24-29
    • Han, W.1    Ye, M.2    Zhu, A.J.3    Zhao, H.T.4    Li, Y.F.5
  • 122
    • 84930377576 scopus 로고    scopus 로고
    • Biohydrogen production from crude glycerol by two stage of dark and photo fermentation
    • Chookaew, T.; O-Thong, S.; Prasertsan, P. Biohydrogen production from crude glycerol by two stage of dark and photo fermentation. Int. J. Hydrog. Energy 2015, 40, 7433-7438.
    • (2015) Int. J. Hydrog. Energy , vol.40 , pp. 7433-7438
    • Chookaew, T.1    O-Thong, S.2    Prasertsan, P.3
  • 124
    • 84916237389 scopus 로고    scopus 로고
    • A two-stage process for hydrogen production from cheese whey: Integration of dark fermentation and biocatalyzed electrolysis
    • Moreno, R.; Escapa, A.; Cara, J.; Carracedo, B.; Gómez, X. A two-stage process for hydrogen production from cheese whey: Integration of dark fermentation and biocatalyzed electrolysis. Int. J. Hydrog. Energy 2015, 40, 168-175.
    • (2015) Int. J. Hydrog. Energy , vol.40 , pp. 168-175
    • Moreno, R.1    Escapa, A.2    Cara, J.3    Carracedo, B.4    Gómez, X.5
  • 125
    • 77956379973 scopus 로고    scopus 로고
    • Hydrogen production from water hyacinth through dark- and photo- fermentation
    • Su, H.; Cheng, J.; Zhou, J.; Song, W.; Cen, K. Hydrogen production from water hyacinth through dark- and photo- fermentation. Int. J. Hydrog. Energy 2010, 35, 8929-8937.
    • (2010) Int. J. Hydrog. Energy , vol.35 , pp. 8929-8937
    • Su, H.1    Cheng, J.2    Zhou, J.3    Song, W.4    Cen, K.5
  • 126
    • 70349437184 scopus 로고    scopus 로고
    • Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat
    • Argun, H.; Kargi, F. Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat. Int. J. Hydrog. Energy 2009, 34, 8543-8548.
    • (2009) Int. J. Hydrog. Energy , vol.34 , pp. 8543-8548
    • Argun, H.1    Kargi, F.2
  • 128
    • 74849121644 scopus 로고    scopus 로고
    • Effects of starch loading rate on performance of combined fed-batch fermentation of ground wheat for bio-hydrogen production
    • Ozmihci, S.; Kargi, F. Effects of starch loading rate on performance of combined fed-batch fermentation of ground wheat for bio-hydrogen production. Int. J. Hydrog. Energy 2010, 35, 1106-1111.
    • (2010) Int. J. Hydrog. Energy , vol.35 , pp. 1106-1111
    • Ozmihci, S.1    Kargi, F.2
  • 129
    • 80051577513 scopus 로고    scopus 로고
    • Biohydrogen production in an outdoor panel photobioreactor on dark fermentation effluent of molasses
    • Avcioglu, S.G.; Ozgur, E.; Eroglu, I.; Yucel, M.; Gunduz, U. Biohydrogen production in an outdoor panel photobioreactor on dark fermentation effluent of molasses. Int. J. Hydrog. Energy 2011, 36, 11360-11368.
    • (2011) Int. J. Hydrog. Energy , vol.36 , pp. 11360-11368
    • Avcioglu, S.G.1    Ozgur, E.2    Eroglu, I.3    Yucel, M.4    Gunduz, U.5
  • 130
    • 78149473855 scopus 로고    scopus 로고
    • Photo-fermentation of Rhodobacter sphaeroides for hydrogen production using lignocellulose-derived organic acids
    • Zhu, Z.; Shi, J.; Zhou, Z.; Hu, F.; Bao, J. Photo-fermentation of Rhodobacter sphaeroides for hydrogen production using lignocellulose-derived organic acids. Process Biochem. 2010, 45, 1894-1898.
    • (2010) Process Biochem. , vol.45 , pp. 1894-1898
    • Zhu, Z.1    Shi, J.2    Zhou, Z.3    Hu, F.4    Bao, J.5
  • 131
    • 0021749022 scopus 로고
    • Hydrogen production by Rhodopseudomonas capsulata cells entrapped in carrageenan beads
    • Francou, N.; Vignais, P.M. Hydrogen production by Rhodopseudomonas capsulata cells entrapped in carrageenan beads. Biotechnol. Lett. 1984, 6, 639-644.
    • (1984) Biotechnol. Lett. , vol.6 , pp. 639-644
    • Francou, N.1    Vignais, P.M.2
  • 132
    • 0028338285 scopus 로고
    • Microbial conversion of arabinose and xylose to hydrogen by a newly isolated clostridium sp. No. 2
    • Taguchi, F.; Mizukami, N.; Hasegawa, K.; Saito-Taki, T. Microbial conversion of arabinose and xylose to hydrogen by a newly isolated clostridium sp. No. 2. Can. J. Microbiol. 1994, 40, 228-233.
    • (1994) Can. J. Microbiol. , vol.40 , pp. 228-233
    • Taguchi, F.1    Mizukami, N.2    Hasegawa, K.3    Saito-Taki, T.4
  • 133
    • 84863777646 scopus 로고    scopus 로고
    • High-yield hydrogen production from glucose by supercritical water gasification without added catalyst
    • Susanti, R.F.; Dianningrum, L.W.; Yum, T.; Kim, Y.; Lee, B.G.; Kim, J. High-yield hydrogen production from glucose by supercritical water gasification without added catalyst. Int. J. Hydrog. Energy 2012, 37, 11677-11690.
    • (2012) Int. J. Hydrog. Energy , vol.37 , pp. 11677-11690
    • Susanti, R.F.1    Dianningrum, L.W.2    Yum, T.3    Kim, Y.4    Lee, B.G.5    Kim, J.6
  • 134
    • 77953911590 scopus 로고    scopus 로고
    • Catalytic hydrogen production from municipal sludge in supercritical water with partial oxidation
    • Qinming, Z.; Shuzhong, W.; Liang, W.; Donghai, X. Catalytic Hydrogen Production from Municipal Sludge in Supercritical Water with Partial Oxidation. Chall. Power Eng. Environ. 2007, 1, 1252-1255.
    • (2007) Chall. Power Eng. Environ. , vol.1 , pp. 1252-1255
    • Qinming, Z.1    Shuzhong, W.2    Liang, W.3    Donghai, X.4
  • 135
    • 2042448419 scopus 로고    scopus 로고
    • Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the production of hydrogen for MCFC
    • Frusteri, F.; Freni, S.; Chiodo, V.; Spadaro, L.; Bonura, G.; Cavallaro, S. Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the production of hydrogen for MCFC. J. Power Sour. 2004, 132, 139-144.
    • (2004) J. Power Sour , vol.132 , pp. 139-144
    • Frusteri, F.1    Freni, S.2    Chiodo, V.3    Spadaro, L.4    Bonura, G.5    Cavallaro, S.6
  • 137
    • 84899108150 scopus 로고    scopus 로고
    • Hydrogen production from biomass pyrolysis in molten alkali
    • Deng, W.; Jiang, H.; Wu, Y.; Fan, H.; Ji, J. Hydrogen production from biomass pyrolysis in molten alkali. AASRI Procedia 2012, 3, 217-223.
    • (2012) AASRI Procedia , vol.3 , pp. 217-223
    • Deng, W.1    Jiang, H.2    Wu, Y.3    Fan, H.4    Ji, J.5
  • 138
    • 33847331601 scopus 로고    scopus 로고
    • Electrochemical hydrogen production from thermochemical cycles using a proton exchange membrane electrolyzer
    • Sivasubramanian, P.; Ramasamy, R.P.; Freire, F.J.; Holland, C.E.; Weidner, J.W. Electrochemical hydrogen production from thermochemical cycles using a proton exchange membrane electrolyzer. Int. J. Hydrog. Energy 2007, 32, 463-468.
    • (2007) Int. J. Hydrog. Energy , vol.32 , pp. 463-468
    • Sivasubramanian, P.1    Ramasamy, R.P.2    Freire, F.J.3    Holland, C.E.4    Weidner, J.W.5
  • 139
    • 84893621545 scopus 로고    scopus 로고
    • Electrochemical production of hydrogen coupled with the oxidation of arsenite
    • Kim, J.; Kwon, D.; Kim, K.; Hoffmann, M.R. Electrochemical Production of Hydrogen Coupled with the Oxidation of Arsenite.Environ. Sci. Technol. 2014, 48, 2059-2066.
    • (2014) Environ. Sci. Technol. , vol.48 , pp. 2059-2066
    • Kim, J.1    Kwon, D.2    Kim, K.3    Hoffmann, M.R.4
  • 140
    • 0032646358 scopus 로고    scopus 로고
    • On the synthesis and photochemical studies of nanostructured TiO 1 and TiO 1 admixed VO 1 photoelectrodes in regard to hydrogen production through photoelectrolysis
    • Karn, R.K.; Srivastava, O.N. On the synthesis and photochemical studies of nanostructured TiO 1 and TiO 1 admixed VO 1 photoelectrodes in regard to hydrogen production through photoelectrolysis. Int. J. Hydrog. Energy 1999, 24, 965-971.
    • (1999) Int. J. Hydrog. Energy , vol.24 , pp. 965-971
    • Karn, R.K.1    Srivastava, O.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.