메뉴 건너뛰기




Volumn 9, Issue DEC, 2015, Pages

Modeling and experimental demonstration of a hopfield network analog-to-digital converter with hybrid CMOS/memristor circuits

Author keywords

Analog to digital conversion; Hopfield network; Hybrid circuits; Memristor; Recurrent neural network; Resistive switching

Indexed keywords

ACCURACY; ANALOG DIGITAL CONVERTER; ARTICLE; ARTIFICIAL NEURAL NETWORK; COMPLEMENTARY METAL OXIDE SEMICONDUCTOR; CONDUCTANCE; HOPFIELD NETWORK; MATHEMATICAL MODEL; MEMRISTOR CIRCUIT; SEMICONDUCTOR; SIMULATION; SYNAPSE;

EID: 84954478070     PISSN: 16624548     EISSN: 1662453X     Source Type: Journal    
DOI: 10.3389/fnins.2015.00488     Document Type: Article
Times cited : (65)

References (29)
  • 1
    • 84856173450 scopus 로고    scopus 로고
    • High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm
    • Alibart, F., Gao, L., Hoskins, B. D., and Strukov, D. B. (2012). High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology 23:075201. doi: 10.1088/0957-4484/23/7/075201.
    • (2012) Nanotechnology , vol.23
    • Alibart, F.1    Gao, L.2    Hoskins, B.D.3    Strukov, D.B.4
  • 2
    • 84896979826 scopus 로고    scopus 로고
    • Pattern classification by memristive crossbar circuits using ex situ and in situ training
    • Alibart, F., Zamanidoost, E., and Strukov, D. B. (2013). Pattern classification by memristive crossbar circuits using ex situ and in situ training. Nat. Commun. 4, 2072. doi: 10.1038/ncomms3072.
    • (2013) Nat. Commun , vol.4 , pp. 2072
    • Alibart, F.1    Zamanidoost, E.2    Strukov, D.B.3
  • 3
    • 0025682430 scopus 로고
    • 'A neural-like feed-forward ADC,'
    • (New Orleans, LA)
    • Chigusa, Y., and Tanaka, M. (1990). "A neural-like feed-forward ADC," in Proc. ISCAS'90 (New Orleans, LA), 2959-2962.
    • (1990) Proc. ISCAS'90 , pp. 2959-2962
    • Chigusa, Y.1    Tanaka, M.2
  • 4
    • 84905920654 scopus 로고    scopus 로고
    • Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array
    • Eryilmaz, S. B., Kuzum, D., Jeyasingh, R., Kim, S., BrightSky, M., Lam, C., et al. (2014). Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array. Front. Neurosci. 8:205. doi: 10.3389/fnins.2014.00205.
    • (2014) Front. Neurosci , vol.8 , pp. 205
    • Eryilmaz, S.B.1    Kuzum, D.2    Jeyasingh, R.3    Kim, S.4    BrightSky, M.5    Lam, C.6
  • 5
    • 84886800055 scopus 로고    scopus 로고
    • 'Digital-to-analog and analog-to-digital conversion with metal oxide memristors for ultra-low power computing,'
    • (New York, NY)
    • Gao, L., Merrikh-Bayat, F., Alibart, F., Guo, X., Hoskins, B. D., Cheng, K.-T., et al. (2013a). "Digital-to-analog and analog-to-digital conversion with metal oxide memristors for ultra-low power computing," in Proc. NanoArch'13 (New York, NY), 19-22.
    • (2013) Proc. NanoArch'13 , pp. 19-22
    • Gao, L.1    Merrikh-Bayat, F.2    Alibart, F.3    Guo, X.4    Hoskins, B.D.5    Cheng, K.-T.6
  • 6
    • 84874977202 scopus 로고    scopus 로고
    • Programmable CMOS/memristor threshold logic
    • Gao, L., Alibart, F., and Strukov, D. (2013b). Programmable CMOS/memristor threshold logic. IEEE Trans. Nanotechnol. 12, 115-119. doi: 10.1109/TNANO.2013.2241075.
    • (2013) IEEE Trans. Nanotechnol , vol.12 , pp. 115-119
    • Gao, L.1    Alibart, F.2    Strukov, D.3
  • 8
    • 84872178165 scopus 로고    scopus 로고
    • 'Analog-input analog-weight dot-product operation with Ag/a-Si/Pt memristive devices,'
    • (Santa Cruz, CA)
    • Gao, L., Alibart, F., and Strukov, D. B. (2012). "Analog-input analog-weight dot-product operation with Ag/a-Si/Pt memristive devices," in Proc. VLSI-SoC'12 (Santa Cruz, CA), 88-93.
    • (2012) Proc. VLSI-SoC'12 , pp. 88-93
    • Gao, L.1    Alibart, F.2    Strukov, D.B.3
  • 9
    • 0000477587 scopus 로고
    • VLSI implemetnation of a nerual network memory with several hundreds of neurons
    • Graf, H. P., Jackel, L. D., Howard, R. E., Straughn, B., Denker, J. S., Hubbard, W., et al. (1986). VLSI implemetnation of a nerual network memory with several hundreds of neurons. AIP Conf. Proc. 151, 182-187. doi: 10.1063/1.36253.
    • (1986) AIP Conf. Proc , vol.151 , pp. 182-187
    • Graf, H.P.1    Jackel, L.D.2    Howard, R.E.3    Straughn, B.4    Denker, J.S.5    Hubbard, W.6
  • 10
    • 0004469897 scopus 로고
    • Neurons with graded response have collective computational properties like those of two-state neruons
    • Hopfield, J. J. (1984). Neurons with graded response have collective computational properties like those of two-state neruons. Proc. Natl. Acad. Sci. U.S.A. 81, 3088-3092. doi: 10.1073/pnas.81.10.3088.
    • (1984) Proc. Natl. Acad. Sci. U.S.A , vol.81 , pp. 3088-3092
    • Hopfield, J.J.1
  • 11
    • 84933060043 scopus 로고    scopus 로고
    • Associative memory realized by a configurable memristive Hopfiled neural network
    • Hu, S. G., Liu, Y., Liu, Z., Chen, T. P., Wang, J. J., Yu, Q., et al. (2015). Associative memory realized by a configurable memristive Hopfiled neural network. Nat. Commun. 6, 7522. doi: 10.1038/ncomms8522.
    • (2015) Nat. Commun , vol.6 , pp. 7522
    • Hu, S.G.1    Liu, Y.2    Liu, Z.3    Chen, T.P.4    Wang, J.J.5    Yu, Q.6
  • 13
    • 0023472824 scopus 로고
    • Electronic neural network chips
    • Jackel, L. D., Graf, H. P., and Howard, R. E. (1987). Electronic neural network chips. Appl. Opt. 26, 5077-5080. doi: 10.1364/AO.26.005077.
    • (1987) Appl. Opt , vol.26 , pp. 5077-5080
    • Jackel, L.D.1    Graf, H.P.2    Howard, R.E.3
  • 14
    • 0024719704 scopus 로고
    • Design of a neural-based A/D converter using modified Hopfield network
    • Lee, B. W., and Sheu, B. J. (1989). Design of a neural-based A/D converter using modified Hopfield network. IEEE J. Solid-State Circ. 24, 1129-1135. doi: 10.1109/4.34101.
    • (1989) IEEE J. Solid-State Circ , vol.24 , pp. 1129-1135
    • Lee, B.W.1    Sheu, B.J.2
  • 15
    • 84895918883 scopus 로고    scopus 로고
    • Large-scale memristive associative memories
    • Lehtonen, E., Poikonen, J. H., Laiho, M., and Kanerva, P. (2014). Large-scale memristive associative memories. IEEE Trans. VLSI 22, 562-574. doi: 10.1109/TVLSI.2013.2250319.
    • (2014) IEEE Trans. VLSI , vol.22 , pp. 562-574
    • Lehtonen, E.1    Poikonen, J.H.2    Laiho, M.3    Kanerva, P.4
  • 17
    • 0006772020 scopus 로고
    • Adv. Neural Inofmra Digital-analog hybrid synapse chips for electronic nerual networks t
    • Moopenn, A., Duong, T., and Thakoor, A. P. (1990). Adv. Neural Inofmra Digital-analog hybrid synapse chips for electronic nerual networks t. Proces. Syst. 2, 769-776.
    • (1990) Proces. Syst , vol.2 , pp. 769-776
    • Moopenn, A.1    Duong, T.2    Thakoor, A.P.3
  • 18
    • 84964072229 scopus 로고    scopus 로고
    • 'Modeling and implementation of firing-rate neuromorphic-network classifiers with bilayer Pt/Al2O3/TiO2-x/Pt memristors,'
    • (Washington, DC)
    • Prezioso, M., Kataeva, I., Merrikh-Bayat, F., Hoskins, B., Adam, G., Sota, T., et al. (2015b). "Modeling and implementation of firing-rate neuromorphic-network classifiers with bilayer Pt/Al2O3/TiO2-x/Pt memristors," in IEDM'15. (Washington, DC).
    • (2015) IEDM'15
    • Prezioso, M.1    Kataeva, I.2    Merrikh-Bayat, F.3    Hoskins, B.4    Adam, G.5    Sota, T.6
  • 19
    • 84929095672 scopus 로고    scopus 로고
    • Training and operation of an integrated neuromorphic network based on metal-oxide memristors
    • Prezioso, M., Merrikh Bayat, F., Hoskins, B. D., Adam, G. C., Likharev, K. K., and Strukov, D. B. (2015a). Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61-64. doi: 10.1038/nature14441.
    • (2015) Nature , vol.521 , pp. 61-64
    • Prezioso, M.1    Merrikh Bayat, F.2    Hoskins, B.D.3    Adam, G.C.4    Likharev, K.K.5    Strukov, D.B.6
  • 20
    • 84897614854 scopus 로고    scopus 로고
    • State estimation of memristor-based recurrent neural networks with time-varying delays based on passivity theory
    • Rakkiyappan, R., Chandrasekar, A., Laksmanan, S., and Ju Park, H. (2014). State estimation of memristor-based recurrent neural networks with time-varying delays based on passivity theory. Complexity 19, 32-43. doi: 10.1002/cplx.21482.
    • (2014) Complexity , vol.19 , pp. 32-43
    • Rakkiyappan, R.1    Chandrasekar, A.2    Laksmanan, S.3    Ju Park, H.4
  • 22
    • 0024479801 scopus 로고
    • Practical design and analysis of a simple "neural" optimization circuit
    • Smith, M. J. S., and Portmann, C. L. (1989). Practical design and analysis of a simple "neural" optimization circuit. IEEE Trans. Circ. Syst. 36, 42-50. doi: 10.1109/31.16562.
    • (1989) IEEE Trans. Circ. Syst , vol.36 , pp. 42-50
    • Smith, M.J.S.1    Portmann, C.L.2
  • 23
    • 84857340323 scopus 로고    scopus 로고
    • Resistive switching phenomena in thin films: Materials, devices, and applications
    • Strukov, D. B., and Kohlstedt, H. (2012). Resistive switching phenomena in thin films: Materials, devices, and applications. MRS Bull. 37, 108-114. doi: 10.1557/mrs.2012.2.
    • (2012) MRS Bull , vol.37 , pp. 108-114
    • Strukov, D.B.1    Kohlstedt, H.2
  • 24
    • 0022721216 scopus 로고
    • Simple neural optimization networks-an A/D converter, signal decision circuit, and a linear-programming circuit
    • Tank, D. W., and Hopfield, J. J. (1986). Simple neural optimization networks-an A/D converter, signal decision circuit, and a linear-programming circuit. IEEE Trans. Circ. Syst. 33, 533-541. doi: 10.1109/TCS.1986.1085953.
    • (1986) IEEE Trans. Circ. Syst , vol.33 , pp. 533-541
    • Tank, D.W.1    Hopfield, J.J.2
  • 26
    • 84897022379 scopus 로고    scopus 로고
    • Self-organization in autonomous, recurrent, firing-rate CrossNets with quasi-hebbian plasticity
    • Walls, T. J., and Likharev, K. K. (2014). Self-organization in autonomous, recurrent, firing-rate CrossNets with quasi-hebbian plasticity. IEEE Trans. Neural Netw. Learn. Syst. 25, 819-824. doi: 10.1109/TNNLS.2013.2280904.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst , vol.25 , pp. 819-824
    • Walls, T.J.1    Likharev, K.K.2
  • 27
    • 67650102619 scopus 로고    scopus 로고
    • Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges
    • Waser, R., Dittmann, R., Staikov, G., and Szot, K. (2009). Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mat. 21, 2632-2663. doi: 10.1002/adma.200900375.
    • (2009) Adv. Mat , vol.21 , pp. 2632-2663
    • Waser, R.1    Dittmann, R.2    Staikov, G.3    Szot, K.4
  • 28
    • 80055064591 scopus 로고    scopus 로고
    • Synchronization control of a class of memristor-based recurrent neural networks
    • Wu, A., Wen, S., and Zeng, Z. (2012). Synchronization control of a class of memristor-based recurrent neural networks. Inform. Sci. 183, 106-116. doi: 10.1016/j.ins.2011.07.044.
    • (2012) Inform. Sci , vol.183 , pp. 106-116
    • Wu, A.1    Wen, S.2    Zeng, Z.3
  • 29
    • 84865314918 scopus 로고    scopus 로고
    • Global exponential stability of a class of memristor-based recurrent neural networks with time-varying delays
    • Zhang, G., Shen, Y., and Sun, J. (2012). Global exponential stability of a class of memristor-based recurrent neural networks with time-varying delays. Neurocomputing 97, 149-154. doi: 10.1016/j.neucom.2012.05.002.
    • (2012) Neurocomputing , vol.97 , pp. 149-154
    • Zhang, G.1    Shen, Y.2    Sun, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.