-
1
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima, N., Levine, B., Cuervo, A. M., Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075, doi: 10.1038/nature06639 (2008).
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
2
-
-
81055144784
-
Autophagy: Renovation of cells and tissues
-
Mizushima, N., Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728-741, doi: 10.1016/j.cell.2011.10.026 (2011).
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
3
-
-
0027424777
-
Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
-
Tsukada, M., Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333, 169-174 (1993).
-
(1993)
FEBS Lett
, vol.333
, pp. 169-174
-
-
Tsukada, M.1
Ohsumi, Y.2
-
4
-
-
1542283812
-
In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
-
Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T., Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15, 1101-1111, doi: 10.1091/mbc.E03-09-0704 (2004).
-
(2004)
Mol Biol Cell
, vol.15
, pp. 1101-1111
-
-
Mizushima, N.1
Yamamoto, A.2
Matsui, M.3
Yoshimori, T.4
Ohsumi, Y.5
-
5
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032-1036, doi: 10.1038/nature03029 (2004).
-
(2004)
Nature
, vol.432
, pp. 1032-1036
-
-
Kuma, A.1
-
6
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169, 425-434, doi: 10.1083/jcb.200412022 (2005).
-
(2005)
J Cell Biol
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
-
7
-
-
0016274287
-
Hepatic ketogenesis and gluconeogenesis in humans
-
Garber, A. J., Menzel, P. H., Boden, G., Owen, O. E. Hepatic ketogenesis and gluconeogenesis in humans. J Clin Invest 54, 981-989, doi: 10.1172/JCI107839 (1974).
-
(1974)
J Clin Invest
, vol.54
, pp. 981-989
-
-
Garber, A.J.1
Menzel, P.H.2
Boden, G.3
Owen, O.E.4
-
8
-
-
0014481080
-
Liver and kidney metabolism during prolonged starvation
-
Owen, O. E., Felig, P., Morgan, A. P., Wahren, J., Cahill, G. F. Liver and kidney metabolism during prolonged starvation. J Clin Invest 48, 574-583, doi: 10.1172/JCI106016 (1969).
-
(1969)
J Clin Invest
, vol.48
, pp. 574-583
-
-
Owen, O.E.1
Felig, P.2
Morgan, A.P.3
Wahren, J.4
Cahill, G.F.5
-
9
-
-
0029894504
-
Enhanced ketogenesis in the kidney during hepatic inflow occlusion with the administration of Ringer's acetate solution
-
Nakatani, T., Sakamoto, Y., Ando, H., Kobayashi, K. Enhanced ketogenesis in the kidney during hepatic inflow occlusion with the administration of Ringer's acetate solution. Surgery 119, 684-689 (1996).
-
(1996)
Surgery
, vol.119
, pp. 684-689
-
-
Nakatani, T.1
Sakamoto, Y.2
Ando, H.3
Kobayashi, K.4
-
10
-
-
79251586531
-
Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes
-
Zhang, D. et al. Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes. Am J Physiol Endocrinol Metab 300, E287-295, doi: 10.1152/ajpendo.00308.2010 (2011).
-
(2011)
Am J Physiol Endocrinol Metab
, vol.300
, pp. E287-295
-
-
Zhang, D.1
-
11
-
-
0014817967
-
Amino acid metabolism in the regulation of gluconeogenesis in man
-
Felig, P., Marliss, E., Pozefsky, T., Cahill, G. F. Amino acid metabolism in the regulation of gluconeogenesis in man. Am J Clin Nutr 23, 986-992 (1970).
-
(1970)
Am J Clin Nutr
, vol.23
, pp. 986-992
-
-
Felig, P.1
Marliss, E.2
Pozefsky, T.3
Cahill, G.F.4
-
12
-
-
0016636609
-
Physiologic mechanisms in the development of starvation ketosis in man
-
Grey, N. J., Karl, I., Kipnis, D. M. Physiologic mechanisms in the development of starvation ketosis in man. Diabetes 24, 10-16 (1975).
-
(1975)
Diabetes
, vol.24
, pp. 10-16
-
-
Grey, N.J.1
Karl, I.2
Kipnis, D.M.3
-
13
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544 (2012).
-
(2012)
Autophagy
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
-
14
-
-
0034059143
-
Selective expression of Cre recombinase in skeletal muscle fibers
-
Bothe, G. W., Haspel, J. A., Smith, C. L., Wiener, H. H., Burden, S. J. Selective expression of Cre recombinase in skeletal muscle fibers. Genesis 26, 165-166 (2000).
-
(2000)
Genesis
, vol.26
, pp. 165-166
-
-
Bothe, G.W.1
Haspel, J.A.2
Smith, C.L.3
Wiener, H.H.4
Burden, S.J.5
-
15
-
-
84863503716
-
Liver angiotensinogen is the primary source of renal angiotensin II
-
Matsusaka, T. et al. Liver angiotensinogen is the primary source of renal angiotensin II. J Am Soc Nephrol 23, 1181-1189, doi: 10.1681/ASN.2011121159 (2012).
-
(2012)
J Am Soc Nephrol
, vol.23
, pp. 1181-1189
-
-
Matsusaka, T.1
-
16
-
-
0023496275
-
Lipid droplet accumulation in the heart during fasting
-
Jacob, S. Lipid droplet accumulation in the heart during fasting. Acta Histochem 82, 149-152, doi: 10.1016/S0065-1281(87)80020-X (1987).
-
(1987)
Acta Histochem
, vol.82
, pp. 149-152
-
-
Jacob, S.1
-
17
-
-
63349104160
-
The MAP1-LC3 conjugation system is involved in lipid droplet formation
-
Shibata, M. et al. The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem Biophys Res Commun 382, 419-423, doi: 10.1016/j.bbrc.2009.03.039 (2009).
-
(2009)
Biochem Biophys Res Commun
, vol.382
, pp. 419-423
-
-
Shibata, M.1
-
18
-
-
84870995648
-
Regulation of lipid stores and metabolism by lipophagy
-
Liu, K., Czaja, M. J. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ 20, 3-11, doi: 10.1038/cdd.2012.63 (2013).
-
(2013)
Cell Death Differ
, vol.20
, pp. 3-11
-
-
Liu, K.1
Czaja, M.J.2
-
19
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131-1135, doi: 10.1038/nature07976 (2009).
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
-
20
-
-
0343048979
-
Effect of L-aminocarnitine, an inhibitor of mitochondrial fatty acid oxidation, on the exocrine pancreas and liver in fasted rats
-
Nagy, I., Németh, J., Lászik, Z. Effect of L-aminocarnitine, an inhibitor of mitochondrial fatty acid oxidation, on the exocrine pancreas and liver in fasted rats. Pharmacol Res 41, 9-17, doi: 10.1006/phrs.1999.0565 (2000).
-
(2000)
Pharmacol Res
, vol.41
, pp. 9-17
-
-
Nagy, I.1
Németh, J.2
Lászik, Z.3
-
21
-
-
31344437783
-
Protection against fatty liver but normal adipogenesis in mice lacking adipose differentiation-related protein
-
Chang, B. H. et al. Protection against fatty liver but normal adipogenesis in mice lacking adipose differentiation-related protein. Mol Cell Biol 26, 1063-1076, doi: 10.1128/MCB.26.3.1063-1076.2006 (2006).
-
(2006)
Mol Cell Biol
, vol.26
, pp. 1063-1076
-
-
Chang, B.H.1
-
22
-
-
79959952405
-
Liver autophagy contributes to the maintenance of blood glucose and amino acid levels
-
Ezaki, J. et al. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 7, 727-736 (2011).
-
(2011)
Autophagy
, vol.7
, pp. 727-736
-
-
Ezaki, J.1
-
23
-
-
84877086717
-
Autophagy genes are required for normal lipid levels in C. Elegans
-
Lapierre, L. R. et al. Autophagy genes are required for normal lipid levels in C. elegans. Autophagy 9, 278-286, doi: 10.4161/auto.22930 (2013).
-
(2013)
Autophagy
, vol.9
, pp. 278-286
-
-
Lapierre, L.R.1
-
24
-
-
84925324049
-
Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
-
Rambold, A. S., Cohen, S., Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell 32, 678-692, doi: 10.1016/j.devcel.2015.01.029 (2015).
-
(2015)
Dev Cell
, vol.32
, pp. 678-692
-
-
Rambold, A.S.1
Cohen, S.2
Lippincott-Schwartz, J.3
-
25
-
-
0025145801
-
An explanation for ketogenesis by the intestine of the suckling rat: The presence of an active hydroxymethylglutaryl-coenzyme A pathway
-
Békési, A., Williamson, D. H. An explanation for ketogenesis by the intestine of the suckling rat: the presence of an active hydroxymethylglutaryl-coenzyme A pathway. Biol Neonate 58, 160-165 (1990).
-
(1990)
Biol Neonate
, vol.58
, pp. 160-165
-
-
Békési, A.1
Williamson, D.H.2
-
26
-
-
0031935848
-
The effect of dexamethasone treatment on the expression of the regulatory genes of ketogenesis in intestine and liver of suckling rats
-
Arias, G., Asins, G., Hegardt, F. G., Serra, D. The effect of dexamethasone treatment on the expression of the regulatory genes of ketogenesis in intestine and liver of suckling rats. Mol Cell Biochem 178, 325-333 (1998).
-
(1998)
Mol Cell Biochem
, vol.178
, pp. 325-333
-
-
Arias, G.1
Asins, G.2
Hegardt, F.G.3
Serra, D.4
-
27
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889, doi: 10.1038/nature04724 (2006).
-
(2006)
Nature
, vol.441
, pp. 885-889
-
-
Hara, T.1
-
28
-
-
84858149045
-
Evaluation of Precision Xceed® meter for on-site monitoring of blood-hydroxybutyric acid and glucose concentrations in dairy sheep
-
Panousis, N. et al. Evaluation of Precision Xceed® meter for on-site monitoring of blood-hydroxybutyric acid and glucose concentrations in dairy sheep. Res Vet Sci 93, 435-439, doi: 10.1016/j.rvsc.2011.06.019 (2012).
-
(2012)
Res Vet Sci
, vol.93
, pp. 435-439
-
-
Panousis, N.1
-
29
-
-
34948821093
-
Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet
-
Kume, S. et al. Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet. J Am Soc Nephrol 18, 2715-2723, doi: 10.1681/ASN.2007010089 (2007).
-
(2007)
J Am Soc Nephrol
, vol.18
, pp. 2715-2723
-
-
Kume, S.1
-
30
-
-
84903373757
-
Predictive properties of plasma amino acid profile for cardiovascular disease in patients with type 2 diabetes
-
Kume, S. et al. Predictive properties of plasma amino acid profile for cardiovascular disease in patients with type 2 diabetes. PLoS One 9, e101219, doi: 10.1371/journal.pone.0101219 (2014).
-
(2014)
PLoS One
, vol.9
, pp. e101219
-
-
Kume, S.1
|