메뉴 건너뛰기




Volumn 157, Issue 1, 2016, Pages 166-175

Intraislet pancreatic ducts can give rise to insulin-positive cells

Author keywords

[No Author keywords available]

Indexed keywords

INSULIN; TRANSFORMING GROWTH FACTOR BETA RECEPTOR; MUTANT PROTEIN; PHOTOPROTEIN; PROTEIN SERINE THREONINE KINASE; RED FLUORESCENT PROTEIN; TRANSFORMING GROWTH FACTOR-BETA TYPE II RECEPTOR;

EID: 84954471542     PISSN: 00137227     EISSN: 19457170     Source Type: Journal    
DOI: 10.1210/en.2015-1175     Document Type: Article
Times cited : (44)

References (40)
  • 1
    • 58149378342 scopus 로고    scopus 로고
    • Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth
    • Inada A, Nienaber C, Katsuta H, et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci USA. 2008;105:19915-19919.
    • (2008) Proc Natl Acad Sci USA. , vol.105 , pp. 19915-19919
    • Inada, A.1    Nienaber, C.2    Katsuta, H.3
  • 2
    • 77951611220 scopus 로고    scopus 로고
    • Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss
    • Thorel F, Nepote V, Avril I, et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature. 2010;464:1149-1154.
    • (2010) Nature , vol.464 , pp. 1149-1154
    • Thorel, F.1    Nepote, V.2    Avril, I.3
  • 3
    • 84873111871 scopus 로고    scopus 로고
    • Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration
    • Pan FC, Bankaitis ED, Boyer D, et al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development. 2013;140:751-764.
    • (2013) Development. , vol.140 , pp. 751-764
    • Pan, F.C.1    Bankaitis, E.D.2    Boyer, D.3
  • 4
    • 38749108893 scopus 로고    scopus 로고
    • β Cells can be generated from endogenous progenitors in injured adult mouse pancreas
    • Xu X, D'Hoker J, Stange G, et al. β Cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell. 2008;132:197-207.
    • (2008) Cell. , vol.132 , pp. 197-207
    • Xu, X.1    D'Hoker, J.2    Stange, G.3
  • 5
    • 80053603426 scopus 로고    scopus 로고
    • Duct cells contribute to regeneration of endocrine and acinar cells following pancreatic damage in adult mice
    • 1462.e1451-e1456
    • Criscimanna A, Speicher JA, Houshmand G, et al. Duct cells contribute to regeneration of endocrine and acinar cells following pancreatic damage in adult mice. Gastroenterology. 2011;141:1451-1462, 1462.e1451-e1456.
    • (2011) Gastroenterology , vol.141 , pp. 1451-1462
    • Criscimanna, A.1    Speicher, J.A.2    Houshmand, G.3
  • 6
    • 79951539242 scopus 로고    scopus 로고
    • Sox9α ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas
    • Kopp JL, Dubois CL, Schaffer AE, et al. Sox9α ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development. 2011;138:653-665.
    • (2011) Development. , vol.138 , pp. 653-665
    • Kopp, J.L.1    Dubois, C.L.2    Schaffer, A.E.3
  • 7
    • 71649092364 scopus 로고    scopus 로고
    • Pancreatic exocrine duct cells give rise to insulin-producing β cells during embryogenesis but not after birth
    • Solar M, Cardalda C, Houbracken I, et al. Pancreatic exocrine duct cells give rise to insulin-producing β cells during embryogenesis but not after birth. Dev Cell. 2009;17:849-860.
    • (2009) Dev Cell. , vol.17 , pp. 849-860
    • Solar, M.1    Cardalda, C.2    Houbracken, I.3
  • 8
    • 78651228289 scopus 로고    scopus 로고
    • Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine
    • Furuyama K, Kawaguchi Y, Akiyama H, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet. 2011;43:34-41.
    • (2011) Nat Genet. , vol.43 , pp. 34-41
    • Furuyama, K.1    Kawaguchi, Y.2    Akiyama, H.3
  • 9
    • 2342510386 scopus 로고    scopus 로고
    • Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation
    • Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 2004;429:41-46.
    • (2004) Nature , vol.429 , pp. 41-46
    • Dor, Y.1    Brown, J.2    Martinez, O.I.3    Melton, D.A.4
  • 10
    • 84875452820 scopus 로고    scopus 로고
    • No evidence for β cell neogenesis in murine adult pancreas
    • Xiao X, Chen Z, Shiota C, et al. No evidence for β cell neogenesis in murine adult pancreas. J Clin Invest. 2013;123:2207-2217.
    • (2013) J Clin Invest. , vol.123 , pp. 2207-2217
    • Xiao, X.1    Chen, Z.2    Shiota, C.3
  • 11
    • 84892173922 scopus 로고    scopus 로고
    • Transient cytokine treatment induces acinar cell reprogramming and regenerates functional β cell mass in diabetic mice
    • Baeyens L, Lemper M, Leuckx G, et al. Transient cytokine treatment induces acinar cell reprogramming and regenerates functional β cell mass in diabetic mice. Nat Biotechnol. 2014;32:76-83.
    • (2014) Nat Biotechnol. , vol.32 , pp. 76-83
    • Baeyens, L.1    Lemper, M.2    Leuckx, G.3
  • 12
    • 0037364517 scopus 로고    scopus 로고
    • In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion
    • Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest. 2003;111:843-850.
    • (2003) J Clin Invest. , vol.111 , pp. 843-850
    • Ianus, A.1    Holz, G.G.2    Theise, N.D.3    Hussain, M.A.4
  • 13
    • 61449215920 scopus 로고    scopus 로고
    • Differentiation of COPASsorted non-endocrine pancreatic cells into insulin-positive cells in the mouse
    • Kikugawa R, Katsuta H, Akashi T, et al. Differentiation of COPASsorted non-endocrine pancreatic cells into insulin-positive cells in the mouse. Diabetologia. 2009;52:645-652.
    • (2009) Diabetologia. , vol.52 , pp. 645-652
    • Kikugawa, R.1    Katsuta, H.2    Akashi, T.3
  • 14
    • 84887212574 scopus 로고    scopus 로고
    • Cytokines inducing bone marrow SCAα cells migration into pancreatic islet and conversion into insulin-positive cells in vivo
    • Luo L, Luo JZ, Xiong F, Abedi M, Greer D. Cytokines inducing bone marrow SCAα cells migration into pancreatic islet and conversion into insulin-positive cells in vivo. PloS One. 2009;4:e4504.
    • (2009) PloS One , vol.4 , pp. e4504
    • Luo, L.1    Luo, J.Z.2    Xiong, F.3    Abedi, M.4    Greer, D.5
  • 15
    • 84860410786 scopus 로고    scopus 로고
    • Contextspecific α- to β-cell reprogramming by forced Pdx1 expression
    • Yang YP, Thorel F, Boyer DF, Herrera PL, Wright CV. Contextspecific α- to β-cell reprogramming by forced Pdx1 expression. Genes Dev. 2011;25:1680-1685.
    • (2011) Genes Dev. , vol.25 , pp. 1680-1685
    • Yang, Y.P.1    Thorel, F.2    Boyer, D.F.3    Herrera, P.L.4    Wright, C.V.5
  • 16
    • 0035119871 scopus 로고    scopus 로고
    • Multipotential nestinpositive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes
    • Zulewski H, Abraham EJ, Gerlach MJ, et al. Multipotential nestinpositive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes. 2001;50:521-533.
    • (2001) Diabetes. , vol.50 , pp. 521-533
    • Zulewski, H.1    Abraham, E.J.2    Gerlach, M.J.3
  • 17
    • 84930551418 scopus 로고
    • Studies on the pancreas of the Guinea pig
    • Bensley R. Studies on the pancreas of the guinea pig. Am J Anat. 1911;12:297-388.
    • (1911) Am J Anat. , vol.12 , pp. 297-388
    • Bensley, R.1
  • 20
    • 84857045118 scopus 로고    scopus 로고
    • Whole-mount imaging demonstrates hypervascularity of the pancreatic ducts and other pancreatic structures
    • El-Gohary Y, Tulachan S, Branca M, et al. Whole-mount imaging demonstrates hypervascularity of the pancreatic ducts and other pancreatic structures. Anat Rec (Hoboken). 2012;295:465-473.
    • (2012) Anat Rec (Hoboken) , vol.295 , pp. 465-473
    • El-Gohary, Y.1    Tulachan, S.2    Branca, M.3
  • 21
    • 84886785043 scopus 로고    scopus 로고
    • Specific transduction and labeling of pancreatic ducts by targeted recombinant viral infusion into mouse pancreatic ducts
    • Guo P, Xiao X, El-Gohary Y, et al. Specific transduction and labeling of pancreatic ducts by targeted recombinant viral infusion into mouse pancreatic ducts. Lab Invest. 2013;93:1241-1253.
    • (2013) Lab Invest. , vol.93 , pp. 1241-1253
    • Guo, P.1    Xiao, X.2    El-Gohary, Y.3
  • 22
    • 33845536254 scopus 로고    scopus 로고
    • Regulation of pancreatic β-cell regeneration in the normoglycemic 60% partial-pancreatectomy mouse
    • Peshavaria M, Larmie BL, Lausier J, et al. Regulation of pancreatic β-cell regeneration in the normoglycemic 60% partial-pancreatectomy mouse. Diabetes. 2006;55:3289-3298.
    • (2006) Diabetes. , vol.55 , pp. 3289-3298
    • Peshavaria, M.1    Larmie, B.L.2    Lausier, J.3
  • 25
    • 0342460497 scopus 로고    scopus 로고
    • Expression of a dominantnegative mutant TGF-β type II receptor in transgenic mice reveals essential roles for TGF-β in regulation of growth and differentiation in the exocrine pancreas
    • Bottinger EP, Jakubczak JL, Roberts IS, et al. Expression of a dominantnegative mutant TGF-β type II receptor in transgenic mice reveals essential roles for TGF-β in regulation of growth and differentiation in the exocrine pancreas. EMBO J. 1997;16:2621-2633.
    • (1997) EMBO J. , vol.16 , pp. 2621-2633
    • Bottinger, E.P.1    Jakubczak, J.L.2    Roberts, I.S.3
  • 26
    • 84865301521 scopus 로고    scopus 로고
    • Three-dimensional analysis of the islet vasculature
    • El-Gohary Y, Sims-Lucas S, Lath N, et al. Three-dimensional analysis of the islet vasculature. Anat Rec (Hoboken). 2012;295:1473-1481.
    • (2012) Anat Rec (Hoboken) , vol.295 , pp. 1473-1481
    • El-Gohary, Y.1    Sims-Lucas, S.2    Lath, N.3
  • 27
    • 30944441065 scopus 로고    scopus 로고
    • Transforming growth factor-β pathway: Role in pancreas development and pancreatic disease
    • Rane SG, Lee JH, Lin HM. Transforming growth factor-β pathway: role in pancreas development and pancreatic disease. Cytokine Growth Factor Rev. 2006;17:107-119.
    • (2006) Cytokine Growth Factor Rev. , vol.17 , pp. 107-119
    • Rane, S.G.1    Lee, J.H.2    Lin, H.M.3
  • 28
    • 0028963661 scopus 로고
    • Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse
    • Ritvos O, Tuuri T, Eramaa M, et al. Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech Dev. 1995;50:229-245.
    • (1995) Mech Dev. , vol.50 , pp. 229-245
    • Ritvos, O.1    Tuuri, T.2    Eramaa, M.3
  • 29
    • 0028172289 scopus 로고
    • TGF-β1 influences the relative development of the exocrine and endocrine pancreas in vitro
    • Sanvito F, Herrera PL, Huarte J, et al. TGF-β1 influences the relative development of the exocrine and endocrine pancreas in vitro. Development. 1994;120:3451-3462.
    • (1994) Development. , vol.120 , pp. 3451-3462
    • Sanvito, F.1    Herrera, P.L.2    Huarte, J.3
  • 30
    • 12344313566 scopus 로고    scopus 로고
    • GDF11 modulates NGN3α islet progenitor cell number and promotes β-cell differentiation in pancreas development
    • Harmon EB, Apelqvist AA, Smart NG, Gu X, Osborne DH, Kim SK. GDF11 modulates NGN3α islet progenitor cell number and promotes β-cell differentiation in pancreas development. Development. 2004;131:6163-6174.
    • (2004) Development. , vol.131 , pp. 6163-6174
    • Harmon, E.B.1    Apelqvist, A.A.2    Smart, N.G.3    Gu, X.4    Osborne, D.H.5    Kim, S.K.6
  • 31
    • 35348957846 scopus 로고    scopus 로고
    • Genetic interactions between activin type IIB receptor and Smad2 genes in asymmetrical patterning of the thoracic organs and the development of pancreas islets
    • Goto Y, Nomura M, Tanaka K, et al. Genetic interactions between activin type IIB receptor and Smad2 genes in asymmetrical patterning of the thoracic organs and the development of pancreas islets. Dev Dyn. 2007;236:2865-2874.
    • (2007) Dev Dyn. , vol.236 , pp. 2865-2874
    • Goto, Y.1    Nomura, M.2    Tanaka, K.3
  • 32
    • 0033869726 scopus 로고    scopus 로고
    • Activin receptor patterning of foregut organogenesis
    • Kim SK, Hebrok M, Li E, et al. Activin receptor patterning of foregut organogenesis. Genes Dev. 2000;14:1866-1871.
    • (2000) Genes Dev. , vol.14 , pp. 1866-1871
    • Kim, S.K.1    Hebrok, M.2    Li, E.3
  • 33
    • 0032476723 scopus 로고    scopus 로고
    • TGF-β plays a key role in morphogenesis of the pancreatic islets of Langerhans by controlling the activity of the matrix metalloproteinase MMP-2
    • Miralles F, Battelino T, Czernichow P, Scharfmann R. TGF-β plays a key role in morphogenesis of the pancreatic islets of Langerhans by controlling the activity of the matrix metalloproteinase MMP-2. J Cell Biol. 1998;143:827-836.
    • (1998) J Cell Biol. , vol.143 , pp. 827-836
    • Miralles, F.1    Battelino, T.2    Czernichow, P.3    Scharfmann, R.4
  • 34
    • 34247638529 scopus 로고    scopus 로고
    • TGF-β isoform signaling regulates secondary transition and mesenchymal-induced endocrine development in the embryonic mouse pancreas
    • Tulachan SS, Tei E, Hembree M, et al. TGF-β isoform signaling regulates secondary transition and mesenchymal-induced endocrine development in the embryonic mouse pancreas. Dev Biol. 2007;305:508-521.
    • (2007) Dev Biol. , vol.305 , pp. 508-521
    • Tulachan, S.S.1    Tei, E.2    Hembree, M.3
  • 35
    • 0033009460 scopus 로고    scopus 로고
    • The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration
    • Sharma A, Zangen DH, Reitz P, et al. The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration. Diabetes. 1999;48:507-513.
    • (1999) Diabetes. , vol.48 , pp. 507-513
    • Sharma, A.1    Zangen, D.H.2    Reitz, P.3
  • 36
    • 73949140059 scopus 로고    scopus 로고
    • A robust and highthroughput Cre reporting and characterization system for the whole mouse brain
    • Madisen L, Zwingman TA, Sunkin SM, et al. A robust and highthroughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133-140.
    • (2010) Nat Neurosci. , vol.13 , pp. 133-140
    • Madisen, L.1    Zwingman, T.A.2    Sunkin, S.M.3
  • 37
    • 72649101271 scopus 로고    scopus 로고
    • Ductal origin hypothesis of pancreatic regeneration under attack
    • Kushner JA, Weir GC, Bonner-Weir S. Ductal origin hypothesis of pancreatic regeneration under attack. Cell Metab. 2010;11:2-3.
    • (2010) Cell Metab. , vol.11 , pp. 2-3
    • Kushner, J.A.1    Weir, G.C.2    Bonner-Weir, S.3
  • 38
    • 70350513347 scopus 로고    scopus 로고
    • Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras
    • Gidekel Friedlander SY, Chu GC, Snyder EL, et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell. 2009;16:379-389.
    • (2009) Cancer Cell. , vol.16 , pp. 379-389
    • Gidekel Friedlander, S.Y.1    Chu, G.C.2    Snyder, E.L.3
  • 39
    • 84877928075 scopus 로고    scopus 로고
    • Smad signaling pathways regulate pancreatic endocrine development
    • El-Gohary Y, Tulachan S, Guo P, et al. Smad signaling pathways regulate pancreatic endocrine development. Dev Biol. 2013;378:83-93.
    • (2013) Dev Biol. , vol.378 , pp. 83-93
    • El-Gohary, Y.1    Tulachan, S.2    Guo, P.3
  • 40
    • 0038682002 scopus 로고    scopus 로고
    • Mechanisms of TGF-β signaling from cell membrane to the nucleus
    • Shi Y, Massague J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 2003;113:685-700.
    • (2003) Cell. , vol.113 , pp. 685-700
    • Shi, Y.1    Massague, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.