메뉴 건너뛰기




Volumn 22, Issue , 2012, Pages 712-721

High-dimensional structured feature screening using binary markov random fields

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTERING ALGORITHMS; IMAGE SEGMENTATION; INTERFACES (COMPUTER); MARKOV PROCESSES;

EID: 84954468219     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (48)
  • 2
    • 50849141334 scopus 로고    scopus 로고
    • Rejoinder: The Dantzig selector: Statistical estimation when p is much larger than n
    • Candés, E., & Tao, T. (2007). Rejoinder: the Dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics, 35, 2392-2404.
    • (2007) Annals of Statistics , vol.35 , pp. 2392-2404
    • Candés, E.1    Tao, T.2
  • 3
    • 0037209490 scopus 로고    scopus 로고
    • EM procedures using mean field-like approximations for Markov model-based image segmentation
    • Celeux, G., Forbes, F., & Peyrard, N. (2003). EM procedures using mean field-like approximations for Markov model-based image segmentation. Pattern Recognition, 36, 131-144.
    • (2003) Pattern Recognition , vol.36 , pp. 131-144
    • Celeux, G.1    Forbes, F.2    Peyrard, N.3
  • 5
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 6
    • 70449440300 scopus 로고    scopus 로고
    • Ultrahigh dimensional feature selection: Beyond the linear model
    • Fan, J., Samworth, R., & Wu, Y. (2009). Ultrahigh dimensional feature selection: Beyond the linear model. Journal of Machine Learning Research, 10, 2013-2038.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2013-2038
    • Fan, J.1    Samworth, R.2    Wu, Y.3
  • 7
    • 0001424107 scopus 로고
    • Constructing maximal dynamic flows from static flows
    • Ford, L. R., & Fulkerson, D. R. (1958). Constructing maximal dynamic flows from static flows. Operations Research, 6, 419-433.
    • (1958) Operations Research , vol.6 , pp. 419-433
    • Ford, L.R.1    Fulkerson, D.R.2
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 11
    • 71249130909 scopus 로고    scopus 로고
    • Bayesian lasso regression
    • Hans, C. (2009). Bayesian lasso regression. Biometrika, 96, 835-845.
    • (2009) Biometrika , vol.96 , pp. 835-845
    • Hans, C.1
  • 19
    • 84954522755 scopus 로고    scopus 로고
    • Exploiting covariate similarity in sparse regression via the pairwise elastic net
    • Lorbert, A., Eis, D., Kostina, V., Blei, D., & Ramadge, P. (2010). Exploiting covariate similarity in sparse regression via the pairwise elastic net. AISTATS.
    • (2010) AISTATS
    • Lorbert, A.1    Eis, D.2    Kostina, V.3    Blei, D.4    Ramadge, P.5
  • 20
    • 27644529477 scopus 로고    scopus 로고
    • Marshfield clinic personalized medicine research project (PMRP): Design, methods and recruitment for a large populationbased biobank
    • McCarty, C., Wilke, R., Giampietro, P., Wesbrook, S., & Caldwell, M. (2005). Marshfield Clinic Personalized Medicine Research Project (PMRP): design, methods and recruitment for a large populationbased biobank. Personalized Med, 2, 49-79.
    • (2005) Personalized Med , Issue.2 , pp. 49-79
    • McCarty, C.1    Wilke, R.2    Giampietro, P.3    Wesbrook, S.4    Caldwell, M.5
  • 23
    • 77949776227 scopus 로고    scopus 로고
    • Association tests using kernelbased measures of multi-locus genotype similarity between individuals
    • Mukhopadhyay, I., Feingold, E., Weeks, D. E., & Thalamuthu, A. (2010). Association tests using kernelbased measures of multi-locus genotype similarity between individuals. Genetic Epidemiology, 34, 213-221.
    • (2010) Genetic Epidemiology , vol.34 , pp. 213-221
    • Mukhopadhyay, I.1    Feingold, E.2    Weeks, D.E.3    Thalamuthu, A.4
  • 25
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of maxdependency, max-relevance, and min-redundancy
    • Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information: criteria of maxdependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1226-1238.
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 27
    • 85162564149 scopus 로고    scopus 로고
    • EigenNet: A Bayesian hybrid of generative and conditional models for sparse learning
    • Qi, Y., & Yan, F. (2011). EigenNet: A Bayesian hybrid of generative and conditional models for sparse learning. NIPS.
    • (2011) NIPS
    • Qi, Y.1    Yan, F.2
  • 31
    • 67549103690 scopus 로고    scopus 로고
    • Gene clustering via integrated markov models combining individual and pairwise features
    • Vignes, M., & Forbes, F. (2009). Gene clustering via integrated markov models combining individual and pairwise features. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 6, 260-270.
    • (2009) IEEE/ACM Trans. Comput. Biol. Bioinformatics , vol.6 , pp. 260-270
    • Vignes, M.1    Forbes, F.2
  • 32
    • 29344473978 scopus 로고    scopus 로고
    • Tree-reweighted belief propagation algorithms and approximate ML estimation via pseudomoment matching
    • Wainwright, M. J., Jaakkola, T. S., & Willsky, A. S. (2003). Tree-reweighted belief propagation algorithms and approximate ML estimation via pseudomoment matching. AISTATS.
    • (2003) AISTATS
    • Wainwright, M.J.1    Jaakkola, T.S.2    Willsky, A.S.3
  • 33
    • 33744544478 scopus 로고    scopus 로고
    • Logdeterminant relaxation for approximate inference in discrete Markov random fields
    • Wainwright, M. J., & Jordan, M. I. (2006). Logdeterminant relaxation for approximate inference in discrete Markov random fields. IEEE Transactions on Signal Processing, 54, 2099-2109.
    • (2006) Transactions On Signal Processing I. , vol.54 , pp. 2099-2109
    • Wainwright, M.J.1    Jordan, M.I.2
  • 34
    • 69049091975 scopus 로고    scopus 로고
    • Highdimensional variable selection
    • Wasserman, L., & Roeder, K. (2009). Highdimensional variable selection. Annals of Statistics, 37, 2178-2201.
    • (2009) Annals of Statistics , vol.37 , pp. 2178-2201
    • Wasserman, L.1    Roeder, K.2
  • 36
    • 78651077964 scopus 로고    scopus 로고
    • Learning in Markov random fields with contrastive free energies
    • Welling, M., & Sutton, C. (2005). Learning in Markov random fields with contrastive free energies. AISTATS.
    • (2005) AISTATS
    • Welling, M.1    Sutton, C.2
  • 37
    • 33751114975 scopus 로고    scopus 로고
    • Generalized genomic distance-based regression methodology for multilocus association analysis
    • Wessel, J., & Schork, N. J. (2006). Generalized genomic distance-based regression methodology for multilocus association analysis. American Journal of Human Genetics, 79, 792-806.
    • (2006) American Journal of Human Genetics , vol.79 , pp. 792-806
    • Wessel, J.1    Schork, N.J.2
  • 39
    • 62549115747 scopus 로고    scopus 로고
    • Genome-wide association analysis by lasso penalized logistic regression
    • Wu, T. T., Chen, Y. F., Hastie, T., Sobel, E. M., & Lange, K. (2009). Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics, 25, 714-721.
    • (2009) Bioinformatics , vol.25 , pp. 714-721
    • Wu, T.T.1    Chen, Y.F.2    Hastie, T.3    Sobel, E.M.4    Lange, K.5
  • 40
    • 84876716412 scopus 로고    scopus 로고
    • Efficient variable selection in support vector machines via the alternating direction method of multipliers
    • Ye, G., Chen, Y., & Xie, X. (2011). Efficient variable selection in support vector machines via the alternating direction method of multipliers. AISTATS.
    • (2011) AISTATS
    • Ye, G.1    Chen, Y.2    Xie, X.3
  • 41
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu, L., & Liu, H. (2004). Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 5, 1205-1224.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 43
    • 30344438839 scopus 로고    scopus 로고
    • Gene selection using support vector machines with nonconvex penalty
    • Zhang, H. H., Ahn, J., & Lin, X. (2006). Gene selection using support vector machines with nonconvex penalty. Bioinformatics, 22, 88-95.
    • (2006) Bioinformatics , vol.22 , pp. 88-95
    • Zhang, H.H.1    Ahn, J.2    Lin, X.3
  • 44
    • 80052135935 scopus 로고    scopus 로고
    • Exclusive lasso for multi-task feature selection
    • Zhou, Y., Jin, R., & Hoi, S. C. (2010). Exclusive lasso for multi-task feature selection. AISTATS.
    • (2010) AISTATS
    • Zhou, Y.1    Jin, R.2    Hoi, S.C.3
  • 46
    • 62549126570 scopus 로고    scopus 로고
    • On the adaptive elastic-net with a diverging number of parameters
    • Zou, H., & Zhang, H. H. (2009). On the adaptive elastic-net with a diverging number of parameters. Annals of Statistics, 37, 1733.
    • (2009) Annals of Statistics , vol.37 , pp. 1733
    • Zou, H.1    Zhang, H.H.2
  • 47
    • 70349999415 scopus 로고    scopus 로고
    • Gene ranking and biomarker discovery under correlation
    • Zuber, V., & Strimmer, K. (2009). Gene ranking and biomarker discovery under correlation. Bioinformatics, 25, 2700-2707.
    • (2009) Bioinformatics , vol.25 , pp. 2700-2707
    • Zuber, V.1    Strimmer, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.