메뉴 건너뛰기




Volumn 9, Issue , 2010, Pages 653-660

A regularization approach to nonlinear variable selection

Author keywords

[No Author keywords available]

Indexed keywords

EMPIRICAL PROPERTIES; INPUT VARIABLES; ITERATIVE PROCEDURES; NONLINEAR VARIABLES; PARTIAL DERIVATIVES; REGRESSION FUNCTION; REGULARIZATION APPROACH; REGULARIZATION SCHEMES; REGULARIZED LEAST SQUARES; RIDGE REGRESSION; VARIABLE SELECTION; VARIATIONAL PROBLEMS;

EID: 84862290026     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (19)

References (23)
  • 1
    • 85027388762 scopus 로고    scopus 로고
    • Exploring large feature spaces with hierarchical multiple kernel learning
    • Sep
    • F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In NIPS, Sep 2008.
    • (2008) NIPS
    • Bach, F.1
  • 2
    • 55449104028 scopus 로고    scopus 로고
    • Towards a theoretical foundation for laplacian-based manifold methods
    • Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation for laplacian-based manifold methods. Journal of Computer and System Sciences, 74 (8):1289-1308, 2008.
    • (2008) Journal of Computer and System Sciences , vol.74 , Issue.8 , pp. 1289-1308
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 34548275795 scopus 로고    scopus 로고
    • The dantzig selector: Statistical estimation when p is much larger than n
    • E. J. Candès and T. Tao. The dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics, 35:2313-2351, 2005.
    • (2005) Annals of Statistics , vol.35 , pp. 2313-2351
    • Candès, E.J.1    Tao, T.2
  • 4
    • 30844438177 scopus 로고    scopus 로고
    • Signal recovery by proximal forward-backward splitting
    • electronic
    • P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul., 4(4):1168-1200 (electronic), 2005.
    • (2005) Multiscale Model. Simul. , vol.4 , Issue.4 , pp. 1168-1200
    • Combettes, P.L.1    Wajs, V.R.2
  • 5
    • 78649765600 scopus 로고    scopus 로고
    • Iteratively solving linear inverse problems under general convex constraints
    • I. Daubechies, G. Teschke, and L. Vese. Iteratively solving linear inverse problems under general convex constraints. Inverse Problems and Imaging, 1(1):29-46, 2007.
    • (2007) Inverse Problems and Imaging , vol.1 , Issue.1 , pp. 29-46
    • Daubechies, I.1    Teschke, G.2    Vese, L.3
  • 6
    • 67649271550 scopus 로고    scopus 로고
    • A regularized method for selecting nested groups of relevant genes from microarray data
    • May
    • C. De Mol, Mosci, M. S. Traskine, and A. Verri. A regularized method for selecting nested groups of relevant genes from microarray data. Journal of Computational Biology, 16(5):677-690, May 2009.
    • (2009) Journal of Computational Biology , vol.16 , Issue.5 , pp. 677-690
    • De Mol, C.1    Traskine, S.M.M.2    Verri, A.3
  • 9
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • Technical report
    • M.A.T. Figueiredo, R.D. Nowak, and S.J. Wright. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. Technical report, IEEE Journal of Selected Topics in Signal Processing, 2007.
    • (2007) IEEE Journal of Selected Topics in Signal Processing
    • Figueiredo, M.A.T.1    Nowak, R.D.2    Wright, S.J.3
  • 12
    • 69649095451 scopus 로고    scopus 로고
    • Fixed-point continuation for l1-minimization: Methodology and convergence
    • E. T. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for l1-minimization: Methodology and convergence. SIOPT, 19(3):1107-1130, 2008.
    • (2008) SIOPT , vol.19 , Issue.3 , pp. 1107-1130
    • Hale, E.T.1    Yin, W.2    Zhang, Y.3
  • 14
    • 33847350805 scopus 로고    scopus 로고
    • Component selection and smoothing in multivariate nonparametric regression
    • B. Y. Lin and H. H. Zhang. Component selection and smoothing in multivariate nonparametric regression. Annals of Statistics, 34(5):2272-2297, 2006.
    • (2006) Annals of Statistics , vol.34 , Issue.5 , pp. 2272-2297
    • Lin, B.Y.1    Zhang, H.H.2
  • 15
    • 0000345334 scopus 로고
    • Splitting algorithms for the sum of two nonlinear operators
    • P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal., 16(6):964-979, 1979.
    • (1979) SIAM J. Numer. Anal. , vol.16 , Issue.6 , pp. 964-979
    • Lions, P.-L.1    Mercier, B.2
  • 22
    • 84863393425 scopus 로고    scopus 로고
    • Adaptive forward-backward greedy algorithm for sparse learning with linear models
    • Tong Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. In Advances in Neural Information Processing Systems, pages 1921-1928. 2009.
    • (2009) Advances in Neural Information Processing Systems , pp. 1921-1928
    • Zhang, T.1
  • 23
    • 47849102973 scopus 로고    scopus 로고
    • Derivative reproducing properties for kernel methods in learning theory
    • Ding-Xuan Zhou. Derivative reproducing properties for kernel methods in learning theory. J. Comput. Appl. Math., 220:456-463, 2008.
    • (2008) J. Comput. Appl. Math. , vol.220 , pp. 456-463
    • Zhou, D.-X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.