-
1
-
-
85027388762
-
Exploring large feature spaces with hierarchical multiple kernel learning
-
Sep
-
F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In NIPS, Sep 2008.
-
(2008)
NIPS
-
-
Bach, F.1
-
2
-
-
55449104028
-
Towards a theoretical foundation for laplacian-based manifold methods
-
Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation for laplacian-based manifold methods. Journal of Computer and System Sciences, 74 (8):1289-1308, 2008.
-
(2008)
Journal of Computer and System Sciences
, vol.74
, Issue.8
, pp. 1289-1308
-
-
Belkin, M.1
Niyogi, P.2
-
3
-
-
34548275795
-
The dantzig selector: Statistical estimation when p is much larger than n
-
E. J. Candès and T. Tao. The dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics, 35:2313-2351, 2005.
-
(2005)
Annals of Statistics
, vol.35
, pp. 2313-2351
-
-
Candès, E.J.1
Tao, T.2
-
4
-
-
30844438177
-
Signal recovery by proximal forward-backward splitting
-
electronic
-
P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul., 4(4):1168-1200 (electronic), 2005.
-
(2005)
Multiscale Model. Simul.
, vol.4
, Issue.4
, pp. 1168-1200
-
-
Combettes, P.L.1
Wajs, V.R.2
-
5
-
-
78649765600
-
Iteratively solving linear inverse problems under general convex constraints
-
I. Daubechies, G. Teschke, and L. Vese. Iteratively solving linear inverse problems under general convex constraints. Inverse Problems and Imaging, 1(1):29-46, 2007.
-
(2007)
Inverse Problems and Imaging
, vol.1
, Issue.1
, pp. 29-46
-
-
Daubechies, I.1
Teschke, G.2
Vese, L.3
-
6
-
-
67649271550
-
A regularized method for selecting nested groups of relevant genes from microarray data
-
May
-
C. De Mol, Mosci, M. S. Traskine, and A. Verri. A regularized method for selecting nested groups of relevant genes from microarray data. Journal of Computational Biology, 16(5):677-690, May 2009.
-
(2009)
Journal of Computational Biology
, vol.16
, Issue.5
, pp. 677-690
-
-
De Mol, C.1
Traskine, S.M.M.2
Verri, A.3
-
7
-
-
21844447610
-
Learning from examples as an inverse problem
-
May
-
E. De Vito, L. Rosasco, A. Caponnetto, U. De Giovannini, and F. Odone. Learning from examples as an inverse problem. Journal of Machine Learning Research, 6:883-904, May 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 883-904
-
-
De Vito, E.1
Rosasco, L.2
Caponnetto, A.3
De Giovannini, U.4
Odone, F.5
-
8
-
-
3242708140
-
Least angle regression
-
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics, 32:407-499, 2004.
-
(2004)
Annals of Statistics
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
10
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, H. Coller, M. Loh, J. Downing, M. Caligiuri, C. Bloomfield, and E. Lander. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286:531-537, 1999.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.1
Slonim, D.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.6
Coller, H.7
Loh, M.8
Downing, J.9
Caligiuri, M.10
Bloomfield, C.11
Lander, E.12
-
11
-
-
84863435145
-
-
Springer Berlin / Heidelberg
-
I. Guyon, H. Bitter, Z. Ahmed, M. Brown, and J. Heller. Multivariate Non-Linear Feature Selection with Kernel Methods, pages 313-326. Springer Berlin / Heidelberg, 2006.
-
(2006)
Multivariate Non-Linear Feature Selection with Kernel Methods
, pp. 313-326
-
-
Guyon, I.1
Bitter, H.2
Ahmed, Z.3
Brown, M.4
Heller, J.5
-
12
-
-
69649095451
-
Fixed-point continuation for l1-minimization: Methodology and convergence
-
E. T. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for l1-minimization: Methodology and convergence. SIOPT, 19(3):1107-1130, 2008.
-
(2008)
SIOPT
, vol.19
, Issue.3
, pp. 1107-1130
-
-
Hale, E.T.1
Yin, W.2
Zhang, Y.3
-
13
-
-
34047125755
-
Embedded methods
-
T. N. Lal, O. Chapelle, J. Weston, and A. Elisseeff. Embedded methods. Foundations and Applications, Studies in Fuzziness and Soft Computing, 207:137-165, 2006.
-
(2006)
Foundations and Applications Studies in Fuzziness and Soft Computing
, vol.207
, pp. 137-165
-
-
Lal, T.N.1
Chapelle, O.2
Weston, J.3
Elisseeff, A.4
-
14
-
-
33847350805
-
Component selection and smoothing in multivariate nonparametric regression
-
B. Y. Lin and H. H. Zhang. Component selection and smoothing in multivariate nonparametric regression. Annals of Statistics, 34(5):2272-2297, 2006.
-
(2006)
Annals of Statistics
, vol.34
, Issue.5
, pp. 2272-2297
-
-
Lin, B.Y.1
Zhang, H.H.2
-
15
-
-
0000345334
-
Splitting algorithms for the sum of two nonlinear operators
-
P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal., 16(6):964-979, 1979.
-
(1979)
SIAM J. Numer. Anal.
, vol.16
, Issue.6
, pp. 964-979
-
-
Lions, P.-L.1
Mercier, B.2
-
17
-
-
85161989288
-
Spam: Sparse additive models
-
J. C. Platt, D. Koller, Y. Singer, and S. Roweis editors
-
P. Ravikumar, H. Liu, J. Lafferty, and L. Wasserman. Spam: Sparse additive models. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems. 2008.
-
(2008)
Advances in Neural Information Processing Systems
-
-
Ravikumar, P.1
Liu, H.2
Lafferty, J.3
Wasserman, L.4
-
18
-
-
78049440310
-
Iterative projection methods for structured sparsity regularization
-
Massachusetts Institute of Technology, Cambridge, MA
-
L. Rosasco, S. Mosci, M. Santoro, A. Verri, and S. Villa. Iterative projection methods for structured sparsity regularization. Technical Report MITCSAIL- TR-2009-50 / CBCL-282, Massachusetts Institute of Technology, Cambridge, MA, 2009.
-
(2009)
Technical Report MITCSAIL- TR-2009-50 / CBCL-282
-
-
Rosasco, L.1
Mosci, S.2
Santoro, M.3
Verri, A.4
Villa, S.5
-
22
-
-
84863393425
-
Adaptive forward-backward greedy algorithm for sparse learning with linear models
-
Tong Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. In Advances in Neural Information Processing Systems, pages 1921-1928. 2009.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 1921-1928
-
-
Zhang, T.1
-
23
-
-
47849102973
-
Derivative reproducing properties for kernel methods in learning theory
-
Ding-Xuan Zhou. Derivative reproducing properties for kernel methods in learning theory. J. Comput. Appl. Math., 220:456-463, 2008.
-
(2008)
J. Comput. Appl. Math.
, vol.220
, pp. 456-463
-
-
Zhou, D.-X.1
|