-
1
-
-
84884576600
-
Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels
-
10.1039/C3EE41847B 1:CAS:528:DC%2BC3sXhsV2it7nK
-
Li H, Liao JC. Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels. Energ Environ Sci. 2013;6(10):2892-9. doi: 10.1039/C3EE41847B.
-
(2013)
Energ Environ Sci
, vol.6
, Issue.10
, pp. 2892-2899
-
-
Li, H.1
Liao, J.C.2
-
2
-
-
80052470228
-
Extremely thermophilic routes to microbial electrofuels
-
1:CAS:528:DC%2BC3MXpvFSms7k%3D
-
Hawkins AS, Han Y, Lian H, Loder AJ, Menon AL, Iwuchukwu IJ, et al. Extremely thermophilic routes to microbial electrofuels. Acs Catalysis. 2011;1(9):1043-50.
-
(2011)
Acs Catalysis
, vol.1
, Issue.9
, pp. 1043-1050
-
-
Hawkins, A.S.1
Han, Y.2
Lian, H.3
Loder, A.J.4
Menon, A.L.5
Iwuchukwu, I.J.6
-
3
-
-
84926683751
-
Microbial electrochemistry and technology: Terminology and classification
-
10.1039/C4EE03359K
-
Schroder U, Harnisch F, Angenent LT. Microbial electrochemistry and technology: terminology and classification. Energ Environ Sci. 2015;8(2):513-9. doi: 10.1039/C4EE03359K.
-
(2015)
Energ Environ Sci
, vol.8
, Issue.2
, pp. 513-519
-
-
Schroder, U.1
Harnisch, F.2
Angenent, L.T.3
-
4
-
-
84927511397
-
Syntrophic growth via quinone-mediated interspecies electron transfer
-
10.3389/fmicb.2015.00121
-
Smith JA, Nevin KP, Lovley DR. Syntrophic growth via quinone-mediated interspecies electron transfer. Front in Microbiol. 2015;6:121. doi: 10.3389/fmicb.2015.00121.
-
(2015)
Front in Microbiol
, vol.6
, pp. 121
-
-
Smith, J.A.1
Nevin, K.P.2
Lovley, D.R.3
-
5
-
-
29144460324
-
Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus
-
10.1128/aem.71.12.7838-7845.2005
-
Si Ishii, Kosaka T, Hori K, Hotta Y, Watanabe K. Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl Environ Microbiol. 2005;71(12):7838-45. doi: 10.1128/aem.71.12.7838-7845.2005.
-
(2005)
Appl Environ Microbiol
, vol.71
, Issue.12
, pp. 7838-7845
-
-
Si, I.1
Kosaka, T.2
Hori, K.3
Hotta, Y.4
Watanabe, K.5
-
6
-
-
84939508623
-
Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: A novel approach to the bioremediation of arsenic-polluted groundwater
-
10.1016/j.jhazmat.2014.10.014 1:CAS:528:DC%2BC2cXhvVSqt73L
-
Pous N, Casentini B, Rossetti S, Fazi S, Puig S, Aulenta F. Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: a novel approach to the bioremediation of arsenic-polluted groundwater. J Hazard Mater. 2015;283:617-22. doi: 10.1016/j.jhazmat.2014.10.014.
-
(2015)
J Hazard Mater
, vol.283
, pp. 617-622
-
-
Pous, N.1
Casentini, B.2
Rossetti, S.3
Fazi, S.4
Puig, S.5
Aulenta, F.6
-
7
-
-
33644947596
-
Exocellular electron transfer in anaerobic microbial communities
-
10.1111/j.1462-2920.2006.00989.x 1:CAS:528:DC%2BD28XjsFOqsLo%3D
-
Stams AJM, De Bok FAM, Plugge CM, Van Eekert MHA, Dolfing J, Schraa G. Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol. 2006;8(3):371-82. doi: 10.1111/j.1462-2920.2006.00989.x.
-
(2006)
Environ Microbiol
, vol.8
, Issue.3
, pp. 371-382
-
-
Stams, A.J.M.1
De Bok, F.A.M.2
Plugge, C.M.3
Van Eekert, M.H.A.4
Dolfing, J.5
Schraa, G.6
-
8
-
-
0001462037
-
Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent
-
10.1007/BF01024638 1:CAS:528:DyaL1cXhs1Cmtrk%3D
-
Kim T, Kim B. Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent. Biotechnol Lett. 1988;10(2):123-8. doi: 10.1007/BF01024638.
-
(1988)
Biotechnol Lett
, vol.10
, Issue.2
, pp. 123-128
-
-
Kim, T.1
Kim, B.2
-
9
-
-
0028201690
-
Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol
-
10.1128/JB.183.5.1748-1754.2001 1:CAS:528:DyaK2cXitl2rtL8%3D
-
Vasconcelos I, Girbal L, Soucaille P. Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol. 1994;176(5):1443-50. doi: 10.1128/JB.183.5.1748-1754.2001.
-
(1994)
J Bacteriol
, vol.176
, Issue.5
, pp. 1443-1450
-
-
Vasconcelos, I.1
Girbal, L.2
Soucaille, P.3
-
10
-
-
34250639301
-
Respiration of metal (hydr)oxides by Shewanella and Geobacter: A key role for multihaem c-type cytochromes
-
10.1111/j.1365-2958.2007.05783.x 1:CAS:528:DC%2BD2sXnslyjtr0%3D
-
Shi L, Squier TC, Zachara JM, Fredrickson JK. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol. 2007;65(1):12-20. doi: 10.1111/j.1365-2958.2007.05783.x.
-
(2007)
Mol Microbiol
, vol.65
, Issue.1
, pp. 12-20
-
-
Shi, L.1
Squier, T.C.2
Zachara, J.M.3
Fredrickson, J.K.4
-
11
-
-
21344461500
-
Extracellular electron transfer via microbial nanowires
-
10.1038/nature03661 1:CAS:528:DC%2BD2MXltl2ntrc%3D
-
Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. Extracellular electron transfer via microbial nanowires. Nature. 2005;435(7045):1098-101. doi: 10.1038/nature03661.
-
(2005)
Nature
, vol.435
, Issue.7045
, pp. 1098-1101
-
-
Reguera, G.1
McCarthy, K.D.2
Mehta, T.3
Nicoll, J.S.4
Tuominen, M.T.5
Lovley, D.R.6
-
12
-
-
0026740398
-
Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1
-
1:CAS:528:DyaK38XksVChsrg%3D
-
Myers CR, Myers JM. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol. 1992;174(11):3429-38.
-
(1992)
J Bacteriol
, vol.174
, Issue.11
, pp. 3429-3438
-
-
Myers, C.R.1
Myers, J.M.2
-
13
-
-
84863520275
-
Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1
-
10.3389/fmicb.2012.00050
-
Shi L, Rosso KM, Clarke TA, Richardson DJ, Zachara JM, Fredrickson JK. Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1. Front Microbiol. 2012;3:50. doi: 10.3389/fmicb.2012.00050.
-
(2012)
Front Microbiol
, vol.3
, pp. 50
-
-
Shi, L.1
Rosso, K.M.2
Clarke, T.A.3
Richardson, D.J.4
Zachara, J.M.5
Fredrickson, J.K.6
-
14
-
-
41649085415
-
Shewanella secretes flavins that mediate extracellular electron transfer
-
10.1073/pnas.0710525105 1:CAS:528:DC%2BD1cXjs1Oms7g%3D
-
Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci. 2008;105(10):3968-73. doi: 10.1073/pnas.0710525105.
-
(2008)
Proc Natl Acad Sci
, vol.105
, Issue.10
, pp. 3968-3973
-
-
Marsili, E.1
Baron, D.B.2
Shikhare, I.D.3
Coursolle, D.4
Gralnick, J.A.5
Bond, D.R.6
-
15
-
-
84865389363
-
Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor
-
10.1002/bit.24520 1:CAS:528:DC%2BC38XmtVKku7w%3D
-
Choi O, Um Y, Sang B-I. Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor. Biotechnol Bioeng. 2012;109(10):2494-502. doi: 10.1002/bit.24520.
-
(2012)
Biotechnol Bioeng
, vol.109
, Issue.10
, pp. 2494-2502
-
-
Choi, O.1
Um, Y.2
Sang, B.-I.3
-
16
-
-
79953277727
-
Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: Characterization by infrared spectroscopy and proteomics
-
10.1111/j.1462-2920.2010.02407.x 1:CAS:528:DC%2BC3MXmtV2jsbo%3D
-
Cao B, Shi L, Brown RN, Xiong Y, Fredrickson JK, Romine MF, et al. Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: characterization by infrared spectroscopy and proteomics. Environ Microbiol. 2011;13(4):1018-31. doi: 10.1111/j.1462-2920.2010.02407.x.
-
(2011)
Environ Microbiol
, vol.13
, Issue.4
, pp. 1018-1031
-
-
Cao, B.1
Shi, L.2
Brown, R.N.3
Xiong, Y.4
Fredrickson, J.K.5
Romine, M.F.6
-
17
-
-
33746624663
-
Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms
-
10.1073/pnas.0604517103 1:CAS:528:DC%2BD28XnvVarsrs%3D
-
Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci. 2006;103(30):11358-63. doi: 10.1073/pnas.0604517103.
-
(2006)
Proc Natl Acad Sci
, vol.103
, Issue.30
, pp. 11358-11363
-
-
Gorby, Y.A.1
Yanina, S.2
McLean, J.S.3
Rosso, K.M.4
Moyles, D.5
Dohnalkova, A.6
-
18
-
-
84877622906
-
Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate
-
10.1021/es304606u 1:CAS:528:DC%2BC3sXktlKjsLc%3D
-
Xafenias N, Zhang Y, Banks CJ. Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate. Environ Sci Technol. 2013;47(9):4512-20. doi: 10.1021/es304606u.
-
(2013)
Environ Sci Technol
, vol.47
, Issue.9
, pp. 4512-4520
-
-
Xafenias, N.1
Zhang, Y.2
Banks, C.J.3
-
19
-
-
27744521813
-
Remediation and recovery of uranium from contaminated subsurface environments with electrodes
-
10.1021/es050457e 1:CAS:528:DC%2BD2MXhtV2nurzP
-
Gregory KB, Lovley DR. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol. 2005;39(22):8943-7. doi: 10.1021/es050457e.
-
(2005)
Environ Sci Technol
, vol.39
, Issue.22
, pp. 8943-8947
-
-
Gregory, K.B.1
Lovley, D.R.2
-
20
-
-
79551652545
-
Towards electrosynthesis in Shewanella: Energetics of reversing the Mtr pathway for reductive metabolism
-
10.1371/journal.pone.0016649 1:CAS:528:DC%2BC3MXitVGiu74%3D
-
Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR. Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One. 2011;6(2):e16649. doi: 10.1371/journal.pone.0016649.
-
(2011)
PLoS One
, vol.6
, Issue.2
, pp. e16649
-
-
Ross, D.E.1
Flynn, J.M.2
Baron, D.B.3
Gralnick, J.A.4
Bond, D.R.5
-
21
-
-
78650170320
-
Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens
-
10.1016/j.bioelechem.2010.07.005 1:CAS:528:DC%2BC3cXhsF2htLbJ
-
Strycharz SM, Glaven RH, Coppi MV, Gannon SM, Perpetua LA, Liu A, et al. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry. 2011;80(2):142-50. doi: 10.1016/j.bioelechem.2010.07.005.
-
(2011)
Bioelectrochemistry
, vol.80
, Issue.2
, pp. 142-150
-
-
Strycharz, S.M.1
Glaven, R.H.2
Coppi, M.V.3
Gannon, S.M.4
Perpetua, L.A.5
Liu, A.6
-
22
-
-
82355191731
-
Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell
-
10.1007/s00253-011-3583-x 1:CAS:528:DC%2BC3MXhsVelt7fO
-
Croese E, Pereira M, Euverink G-J, Stams AM, Geelhoed J. Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell. Appl Microbiol Biotechnol. 2011;92(5):1083-93. doi: 10.1007/s00253-011-3583-x.
-
(2011)
Appl Microbiol Biotechnol
, vol.92
, Issue.5
, pp. 1083-1093
-
-
Croese, E.1
Pereira, M.2
Euverink, G.-J.3
Stams, A.M.4
Geelhoed, J.5
-
23
-
-
43949088801
-
Application of biocathode in microbial fuel cells: Cell performance and microbial community
-
10.1007/s00253-008-1451-0 1:CAS:528:DC%2BD1cXlvF2ku7s%3D
-
Chen G-W, Choi S-J, Lee T-H, Lee G-Y, Cha J-H, Kim C-W. Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl Microbiol Biotechnol. 2008;79(3):379-88. doi: 10.1007/s00253-008-1451-0.
-
(2008)
Appl Microbiol Biotechnol
, vol.79
, Issue.3
, pp. 379-388
-
-
Chen, G.-W.1
Choi, S.-J.2
Lee, T.-H.3
Lee, G.-Y.4
Cha, J.-H.5
Kim, C.-W.6
-
24
-
-
84923349564
-
Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum
-
10.1038/srep06961
-
Choi O, Kim T, Woo HM, Um Y. Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum. Sci Rep. 2014;. doi: 10.1038/srep06961.
-
(2014)
Sci Rep
-
-
Choi, O.1
Kim, T.2
Woo, H.M.3
Um, Y.4
-
25
-
-
0005343139
-
Direct electrochemical reduction of ferredoxin promoted by Mg2+
-
10.1016/0014-5793(82)80175-0 1:CAS:528:DyaL38XlsFygtLs%3D
-
Armstrong FA, Hill HAO, Walton NJ. Direct electrochemical reduction of ferredoxin promoted by Mg2+. FEBS Lett. 1982;145(2):241-4. doi: 10.1016/0014-5793(82)80175-0.
-
(1982)
FEBS Lett
, vol.145
, Issue.2
, pp. 241-244
-
-
Armstrong, F.A.1
Hill, H.A.O.2
Walton, N.J.3
-
26
-
-
70449714760
-
The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer
-
10.1111/j.1758-2229.2009.00035.x 1:CAS:528:DC%2BC3cXjtFWgtbo%3D
-
Shi L, Richardson DJ, Wang Z, Kerisit SN, Rosso KM, Zachara JM, et al. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ Microbiol Rep. 2009;1(4):220-7. doi: 10.1111/j.1758-2229.2009.00035.x.
-
(2009)
Environ Microbiol Rep
, vol.1
, Issue.4
, pp. 220-227
-
-
Shi, L.1
Richardson, D.J.2
Wang, Z.3
Kerisit, S.N.4
Rosso, K.M.5
Zachara, J.M.6
-
27
-
-
84930637931
-
The structure of PccH from Geobacter sulfurreducens: A novel low reduction potential monoheme cytochrome essential for accepting electrons from an electrode
-
n/a-n/a
-
Dantas JM, Campelo LM, Duke NEC, Salgueiro CA, Pokkuluri PR. The structure of PccH from Geobacter sulfurreducens: A novel low reduction potential monoheme cytochrome essential for accepting electrons from an electrode. FEBS J. 2015:n/a-n/a. doi: 10.1111/febs.13269.
-
(2015)
FEBS J.
-
-
Dantas, J.M.1
Campelo, L.M.2
Nec, D.3
Salgueiro, C.A.4
Pokkuluri, P.R.5
-
28
-
-
84881476373
-
Functional characterization of PccH, a key cytochrome for electron transfer from electrodes to the bacterium Geobacter sulfurreducens
-
10.1016/j.febslet.2013.07.003 1:CAS:528:DC%2BC3sXhtFKlt73I
-
Dantas JM, Tomaz DM, Morgado L, Salgueiro CA. Functional characterization of PccH, a key cytochrome for electron transfer from electrodes to the bacterium Geobacter sulfurreducens. FEBS Lett. 2013;587(16):2662-8. doi: 10.1016/j.febslet.2013.07.003.
-
(2013)
FEBS Lett
, vol.587
, Issue.16
, pp. 2662-2668
-
-
Dantas, J.M.1
Tomaz, D.M.2
Morgado, L.3
Salgueiro, C.A.4
-
29
-
-
84920251610
-
Electroactive bacteria - Molecular mechanisms and genetic tools
-
10.1007/s00253-014-6005-z 1:CAS:528:DC%2BC2cXhtlOrtbnJ
-
Sydow A, Krieg T, Mayer F, Schrader J, Holtmann D. Electroactive bacteria - molecular mechanisms and genetic tools. Appl Microbiol Biotechnol. 2014;98(20):8481-95. doi: 10.1007/s00253-014-6005-z.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, Issue.20
, pp. 8481-8495
-
-
Sydow, A.1
Krieg, T.2
Mayer, F.3
Schrader, J.4
Holtmann, D.5
-
30
-
-
84874639721
-
+ oxidoreductase essential for autotrophic growth
-
10.1128/mBio.00406-12
-
Tremblay PL, Zhang T, Dar SA, Leang C, Lovley DR. The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:nAD+ oxidoreductase essential for autotrophic growth. MBio. 2012;4(1):e00406-12. doi: 10.1128/mBio.00406-12.
-
(2012)
MBio
, vol.4
, Issue.1
, pp. e00406-e00412
-
-
Tremblay, P.L.1
Zhang, T.2
Dar, S.A.3
Leang, C.4
Lovley, D.R.5
-
31
-
-
84893192215
-
Studies on the mechanism of electron bifurcation catalyzed by electron transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) of Acidaminococcus fermentans
-
10.1074/jbc.M113.521013 1:CAS:528:DC%2BC2cXivF2lurY%3D
-
Chowdhury NP, Mowafy AM, Demmer JK, Upadhyay V, Koelzer S, Jayamani E, et al. Studies on the mechanism of electron bifurcation catalyzed by electron transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) of Acidaminococcus fermentans. J Biol Chem. 2014;289(8):5145-57. doi: 10.1074/jbc.M113.521013.
-
(2014)
J Biol Chem
, vol.289
, Issue.8
, pp. 5145-5157
-
-
Chowdhury, N.P.1
Mowafy, A.M.2
Demmer, J.K.3
Upadhyay, V.4
Koelzer, S.5
Jayamani, E.6
-
32
-
-
84871712835
-
Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation
-
10.1016/j.bbabio.2012.07.002 1:CAS:528:DC%2BC38XhtFahs77I
-
Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochim Biophys Acta. 2013;1827(2):94-113. doi: 10.1016/j.bbabio.2012.07.002.
-
(2013)
Biochim Biophys Acta
, vol.1827
, Issue.2
, pp. 94-113
-
-
Buckel, W.1
Thauer, R.K.2
-
33
-
-
84924328742
-
A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui
-
10.1186/1471-2164-15-1139
-
Hess V, Poehlein A, Weghoff MC, Daniel R, Muller V. A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui. BMC Genom. 2014;15:1139. doi: 10.1186/1471-2164-15-1139.
-
(2014)
BMC Genom
, vol.15
, pp. 1139
-
-
Hess, V.1
Poehlein, A.2
Weghoff, M.C.3
Daniel, R.4
Muller, V.5
-
34
-
-
84871587989
-
The origin of membrane bioenergetics
-
10.1016/j.cell.2012.11.050 1:CAS:528:DC%2BC38XhvVymu7nI
-
Lane N, Martin William F. The origin of membrane bioenergetics. Cell. 2012;151(7):1406-16. doi: 10.1016/j.cell.2012.11.050.
-
(2012)
Cell
, vol.151
, Issue.7
, pp. 1406-1416
-
-
Lane, N.1
Martin William, F.2
-
35
-
-
84928393116
-
Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii
-
10.1128/jb.00048-15 1:CAS:528:DC%2BC2MXntFWqsb8%3D
-
Bertsch J, Oppinger C, Hess V, Langer JD, Muller V. Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii. J Bacteriol. 2015;197(9):1681-9. doi: 10.1128/jb.00048-15.
-
(2015)
J Bacteriol
, vol.197
, Issue.9
, pp. 1681-1689
-
-
Bertsch, J.1
Oppinger, C.2
Hess, V.3
Langer, J.D.4
Muller, V.5
-
36
-
-
84936993627
-
Microbial electron transport and energy conservation - The foundation for optimizing bioelectrochemical systems
-
10.3389/fmicb.2015.00575
-
Kracke F, Vassilev I, Krömer JO. Microbial electron transport and energy conservation - the foundation for optimizing bioelectrochemical systems. Front Microbiol. 2015. doi: 10.3389/fmicb.2015.00575.
-
(2015)
Front Microbiol.
-
-
Kracke, F.1
Vassilev, I.2
Krömer, J.O.3
-
37
-
-
0013788501
-
Rubredoxin: A new electron transfer protein from Clostridium pasteurianum
-
1:CAS:528:DyaF2MXkvVWrsbY%3D
-
Lovenberg W, Sobel BE. Rubredoxin: a new electron transfer protein from Clostridium pasteurianum. P Natl Acad Sci USA. 1965;54(1):193-9.
-
(1965)
P Natl Acad Sci USA
, vol.54
, Issue.1
, pp. 193-199
-
-
Lovenberg, W.1
Sobel, B.E.2
-
38
-
-
3042830017
-
The unique hydrogen bonded water in the reduced form of Clostridium pasteurianum rubredoxin and its possible role in electron transfer
-
10.1007/s00775-004-0542-3 1:CAS:528:DC%2BD2cXksVSnsLs%3D
-
Park I, Youn B, Harley J, Eidsness M, Smith E, Ichiye T, et al. The unique hydrogen bonded water in the reduced form of Clostridium pasteurianum rubredoxin and its possible role in electron transfer. JBIC, J Biol Inorg Chem. 2004;9(4):423-8. doi: 10.1007/s00775-004-0542-3.
-
(2004)
JBIC, J Biol Inorg Chem
, vol.9
, Issue.4
, pp. 423-428
-
-
Park, I.1
Youn, B.2
Harley, J.3
Eidsness, M.4
Smith, E.5
Ichiye, T.6
-
39
-
-
0017349567
-
Purification and characterization of cytochrome c3, ferredoxin, and rubredoxin isolated from Desulfovibrio desulfuricans Norway
-
1:CAS:528:DyaE2sXmvVSrtg%3D%3D
-
Bruschi M, Hatchikian CE, Golovleva LA, Gall JL. Purification and characterization of cytochrome c3, ferredoxin, and rubredoxin isolated from Desulfovibrio desulfuricans Norway. J Bacteriol. 1977;129(1):30-8.
-
(1977)
J Bacteriol
, vol.129
, Issue.1
, pp. 30-38
-
-
Bruschi, M.1
Hatchikian, C.E.2
Golovleva, L.A.3
Gall, J.L.4
-
40
-
-
0035476428
-
A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: Catalytic electron transfer to rubrerythrin and two-iron superoxide reductase
-
10.1006/abbi.2001.2531 1:CAS:528:DC%2BD3MXmvFSltbg%3D
-
Coulter ED, Kurtz DM Jr. A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Arch Biochem Biophys. 2001;394(1):76-86. doi: 10.1006/abbi.2001.2531.
-
(2001)
Arch Biochem Biophys
, vol.394
, Issue.1
, pp. 76-86
-
-
Coulter, E.D.1
Kurtz, D.M.2
-
41
-
-
0037448588
-
Electrochemical studies on small electron transfer proteins using membrane electrodes
-
10.1016/S0022-0728(02)01427-4 1:CAS:528:DC%2BD3sXks1GmtA%3D%3D
-
Correia dos Santos MM, Paes de Sousa PM, Simões Gonçalves ML, Krippahl L, Moura JJG, Lojou É, et al. Electrochemical studies on small electron transfer proteins using membrane electrodes. J Electroanal Chem. 2003;541:153-62. doi: 10.1016/S0022-0728(02)01427-4.
-
(2003)
J Electroanal Chem
, vol.541
, pp. 153-162
-
-
Correia dos Santos, M.M.1
Paes De Sousa, P.M.2
Simões Gonçalves, M.L.3
Krippahl, L.4
Moura, J.J.G.5
Lojou, É.6
-
42
-
-
0035937233
-
Electrochemical studies of rubredoxin from Desulfovibrio vulgaris at modified electrodes
-
10.1016/S0022-0728(00)00521-0
-
dos Correia Santos MM, de Paes Sousa PM, Simões Gonçalves ML, Ascenso C, Moura I, Moura JJG. Electrochemical studies of rubredoxin from Desulfovibrio vulgaris at modified electrodes. J Electroanal Chem. 2001;501(1-2):173-9. doi: 10.1016/S0022-0728(00)00521-0.
-
(2001)
J Electroanal Chem
, vol.501
, Issue.1-2
, pp. 173-179
-
-
Dos Correia Santos, M.M.1
De Paes Sousa, P.M.2
Simões Gonçalves, M.L.3
Ascenso, C.4
Moura, I.5
Moura, J.J.G.6
-
43
-
-
84928776576
-
Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis
-
Deutzmann JS, Sahin M, Spormann AM. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio. 2015;6(2). doi: 10.1128/mBio.00496-15.
-
(2015)
MBio.
, vol.6
, Issue.2
-
-
Deutzmann, J.S.1
Sahin, M.2
Spormann, A.M.3
-
44
-
-
77957359097
-
Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?
-
10.1016/j.biortech.2010.07.008 1:CAS:528:DC%2BC3cXht1CgsLnF
-
Rosenbaum M, Aulenta F, Villano M, Angenent LT. Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Biores Technol. 2011;102(1):324-33. doi: 10.1016/j.biortech.2010.07.008.
-
(2011)
Biores Technol
, vol.102
, Issue.1
, pp. 324-333
-
-
Rosenbaum, M.1
Aulenta, F.2
Villano, M.3
Angenent, L.T.4
-
45
-
-
84925223274
-
2 sequestration/reduction in a bioelectrochemical system (BES)
-
10.1016/j.biortech.2014.01.129 1:CAS:528:DC%2BC2cXjtVGhurY%3D
-
Srikanth S, Maesen M, Dominguez-Benetton X, Vanbroekhoven K, Pant D. Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES). Biores Technol. 2014;165:350-4. doi: 10.1016/j.biortech.2014.01.129.
-
(2014)
Biores Technol
, vol.165
, pp. 350-354
-
-
Srikanth, S.1
Maesen, M.2
Dominguez-Benetton, X.3
Vanbroekhoven, K.4
Pant, D.5
-
46
-
-
84862703013
-
Electron transfer between periplasmic formate dehydrogenase and cytochromes c in Desulfovibrio desulfuricans ATCC 27774
-
10.1007/s00775-012-0900-5
-
da Silva SM, Pacheco I, Pereira IA. Electron transfer between periplasmic formate dehydrogenase and cytochromes c in Desulfovibrio desulfuricans ATCC 27774. J Biol Inorg Chem. 2012;17(5):831-8. doi: 10.1007/s00775-012-0900-5.
-
(2012)
J Biol Inorg Chem
, vol.17
, Issue.5
, pp. 831-838
-
-
Da Silva, S.M.1
Pacheco, I.2
Pereira, I.A.3
-
47
-
-
37349062455
-
Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes
-
10.1016/j.electacta.2007.10.018 1:CAS:528:DC%2BD1cXhtV2msw%3D%3D
-
Dumas C, Basseguy R, Bergel A. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochim Acta. 2008;53(5):2494-500. doi: 10.1016/j.electacta.2007.10.018.
-
(2008)
Electrochim Acta
, vol.53
, Issue.5
, pp. 2494-2500
-
-
Dumas, C.1
Basseguy, R.2
Bergel, A.3
-
48
-
-
2642520659
-
Graphite electrodes as electron donors for anaerobic respiration
-
10.1111/j.1462-2920.2004.00593.x 1:CAS:528:DC%2BD2cXlsVSmsbY%3D
-
Gregory KB, Bond DR, Lovley DR. Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol. 2004;6(6):596-604. doi: 10.1111/j.1462-2920.2004.00593.x.
-
(2004)
Environ Microbiol
, vol.6
, Issue.6
, pp. 596-604
-
-
Gregory, K.B.1
Bond, D.R.2
Lovley, D.R.3
-
49
-
-
77957364443
-
Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode
-
10.1016/j.biortech.2010.06.155 1:CAS:528:DC%2BC3cXht1CgsLbM
-
Virdis B, Read ST, Rabaey K, Rozendal RA, Yuan Z, Keller J. Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. Biores Technol. 2011;102(1):334-41. doi: 10.1016/j.biortech.2010.06.155.
-
(2011)
Biores Technol
, vol.102
, Issue.1
, pp. 334-341
-
-
Virdis, B.1
Read, S.T.2
Rabaey, K.3
Rozendal, R.A.4
Yuan, Z.5
Keller, J.6
-
50
-
-
83455221318
-
Biocathodic nitrous oxide removal in bioelectrochemical systems
-
10.1021/es202047x 1:CAS:528:DC%2BC3MXhsVequrjE
-
Desloover J, Puig S, Virdis B, Clauwaert P, Boeckx P, Verstraete W, et al. Biocathodic nitrous oxide removal in bioelectrochemical systems. Environ Sci Technol. 2011;45(24):10557-66. doi: 10.1021/es202047x.
-
(2011)
Environ Sci Technol
, vol.45
, Issue.24
, pp. 10557-10566
-
-
Desloover, J.1
Puig, S.2
Virdis, B.3
Clauwaert, P.4
Boeckx, P.5
Verstraete, W.6
-
51
-
-
84912056751
-
Cathode potential and anode electron donor evaluation for a suitable treatment of nitrate-contaminated groundwater in bioelectrochemical systems. Chem
-
10.1016/j.cej.2014.11.002 1:CAS:528:DC%2BC2cXhvFegt73M
-
Pous N, Puig S, Dolors Balaguer M, Colprim J. Cathode potential and anode electron donor evaluation for a suitable treatment of nitrate-contaminated groundwater in bioelectrochemical systems. Chem. Eng J. 2015;263:151-9. doi: 10.1016/j.cej.2014.11.002.
-
(2015)
Eng J
, vol.263
, pp. 151-159
-
-
Pous, N.1
Puig, S.2
Dolors Balaguer, M.3
Colprim, J.4
-
52
-
-
74649087256
-
4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture
-
10.1016/j.biortech.2009.12.077 1:CAS:528:DC%2BC3cXhtVant7g%3D
-
Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Biores Technol. 2010;101(9):3085-90. doi: 10.1016/j.biortech.2009.12.077.
-
(2010)
Biores Technol
, vol.101
, Issue.9
, pp. 3085-3090
-
-
Villano, M.1
Aulenta, F.2
Ciucci, C.3
Ferri, T.4
Giuliano, A.5
Majone, M.6
-
53
-
-
66249100237
-
Direct biological conversion of electrical current into methane by electromethanogenesis
-
10.1021/es803531g 1:CAS:528:DC%2BD1MXjvFaltrw%3D
-
Cheng S, Xing D, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol. 2009;43(10):3953-8. doi: 10.1021/es803531g.
-
(2009)
Environ Sci Technol
, vol.43
, Issue.10
, pp. 3953-3958
-
-
Cheng, S.1
Xing, D.2
Call, D.F.3
Logan, B.E.4
-
54
-
-
84905011427
-
Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis
-
10.1038/ismej.2014.82 1:CAS:528:DC%2BC2cXht1Wls7zO
-
Lohner ST, Deutzmann JS, Logan BE, Leigh J, Spormann AM. Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J. 2014;8(8):1673-81. doi: 10.1038/ismej.2014.82.
-
(2014)
ISME J
, vol.8
, Issue.8
, pp. 1673-1681
-
-
Lohner, S.T.1
Deutzmann, J.S.2
Logan, B.E.3
Leigh, J.4
Spormann, A.M.5
-
55
-
-
84898766784
-
2 by a thermophilic methanogen
-
10.1016/j.egypro.2013.06.637 1:CAS:528:DC%2BC3sXhs1ynsbnO
-
Hara M, Onaka Y, Kobayashi H, Fu Q, Kawaguchi H, Vilcaez J, et al. Mechanism of electromethanogenic reduction of CO2 by a thermophilic methanogen. Energy Procedia. 2013;37:7021-8. doi: 10.1016/j.egypro.2013.06.637.
-
(2013)
Energy Procedia
, vol.37
, pp. 7021-7028
-
-
Hara, M.1
Onaka, Y.2
Kobayashi, H.3
Fu, Q.4
Kawaguchi, H.5
Vilcaez, J.6
-
56
-
-
77954636353
-
Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase
-
10.1073/pnas.1003653107 1:CAS:528:DC%2BC3cXotVGmtbw%3D
-
Costa KC, Wong PM, Wang T, Lie TJ, Dodsworth JA, Swanson I, et al. Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase. Proc Natl Acad Sci. 2010;107(24):11050-5. doi: 10.1073/pnas.1003653107.
-
(2010)
Proc Natl Acad Sci
, vol.107
, Issue.24
, pp. 11050-11055
-
-
Costa, K.C.1
Wong, P.M.2
Wang, T.3
Lie, T.J.4
Dodsworth, J.A.5
Swanson, I.6
-
57
-
-
79960610114
-
Electron transport in acetate-grown Methanosarcina acetivorans
-
10.1186/1471-2180-11-165 1:CAS:528:DC%2BC3MXhtVKgtL%2FF
-
Wang M, Tomb J-F, Ferry J. Electron transport in acetate-grown Methanosarcina acetivorans. BMC Microbiol. 2011;11(1):165. doi: 10.1186/1471-2180-11-165.
-
(2011)
BMC Microbiol
, vol.11
, Issue.1
, pp. 165
-
-
Wang, M.1
Tomb, J.-F.2
Ferry, J.3
-
58
-
-
84870499112
-
Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex
-
10.1111/febs.12031 1:CAS:528:DC%2BC38XhslKrtLfL
-
Schlegel K, Welte C, Deppenmeier U, Müller V. Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex. FEBS J. 2012;279(24):4444-52. doi: 10.1111/febs.12031.
-
(2012)
FEBS J
, vol.279
, Issue.24
, pp. 4444-4452
-
-
Schlegel, K.1
Welte, C.2
Deppenmeier, U.3
Müller, V.4
-
59
-
-
77953624603
-
2 Storage
-
10.1146/annurev.biochem.030508.152103 1:CAS:528:DC%2BC3cXpslShtrc%3D
-
Thauer RK, Kaster A-K, Goenrich M, Schick M, Hiromoto T, Shima S. Hydrogenases from methanogenic Archaea, nickel, a novel cofactor, and H2 Storage. Annu Rev Biochem. 2010;79(1):507-36. doi: 10.1146/annurev.biochem.030508.152103.
-
(2010)
Annu Rev Biochem
, vol.79
, Issue.1
, pp. 507-536
-
-
Thauer, R.K.1
Kaster, A.-K.2
Goenrich, M.3
Schick, M.4
Hiromoto, T.5
Shima, S.6
-
60
-
-
79955675417
-
Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
-
10.1128/aem.02642-10 1:CAS:528:DC%2BC3MXhtVeju7bF
-
Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol. 2011;77(9):2882-6. doi: 10.1128/aem.02642-10.
-
(2011)
Appl Environ Microbiol
, vol.77
, Issue.9
, pp. 2882-2886
-
-
Nevin, K.P.1
Hensley, S.A.2
Franks, A.E.3
Summers, Z.M.4
Ou, J.5
Woodard, T.L.6
-
61
-
-
84917694522
-
Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor
-
10.1128/aem.02767-14
-
Kato S, Yumoto I, Kamagata Y. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl Environ Microbiol. 2015;81(1):67-73. doi: 10.1128/aem.02767-14.
-
(2015)
Appl Environ Microbiol
, vol.81
, Issue.1
, pp. 67-73
-
-
Kato, S.1
Yumoto, I.2
Kamagata, Y.3
-
62
-
-
79956121333
-
2 conversion catalysts
-
10.1002/cssc.201100107 1:CAS:528:DC%2BC3MXmtFyns78%3D
-
Song J, Kim Y, Lim M, Lee H, Lee JI, Shin W. Microbes as electrochemical CO2 conversion catalysts. ChemSusChem. 2011;4(5):587-90. doi: 10.1002/cssc.201100107.
-
(2011)
ChemSusChem
, vol.4
, Issue.5
, pp. 587-590
-
-
Song, J.1
Kim, Y.2
Lim, M.3
Lee, H.4
Lee, J.I.5
Shin, W.6
-
63
-
-
84955412403
-
Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production
-
10.1016/j.ijhydene.2014.05.038 1:CAS:528:DC%2BC2cXps1Wqsb8%3D
-
Xafenias N, Mapelli V. Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production. Int J Hydrogen Energ. 2014;39(36):21864-75. doi: 10.1016/j.ijhydene.2014.05.038.
-
(2014)
Int J Hydrogen Energ
, vol.39
, Issue.36
, pp. 21864-21875
-
-
Xafenias, N.1
Mapelli, V.2
-
64
-
-
10744223111
-
Energy conservation in acetogenic bacteria
-
10.1128/aem.69.11.6345-6353.2003
-
Müller V. Energy conservation in acetogenic bacteria. Appl Environ Microbiol. 2003;69(11):6345-53. doi: 10.1128/aem.69.11.6345-6353.2003.
-
(2003)
Appl Environ Microbiol
, vol.69
, Issue.11
, pp. 6345-6353
-
-
Müller, V.1
-
66
-
-
84969234067
-
Toward electrosynthesis with uncoupled extracellular electron uptake and metabolic growth: Enhancing current uptake with Rhodopseudomonas palustris
-
10.1021/ez500244n 1:CAS:528:DC%2BC2cXhtlagu7vE
-
Doud DFR, Angenent LT. Toward electrosynthesis with uncoupled extracellular electron uptake and metabolic growth: enhancing current uptake with Rhodopseudomonas palustris. Environ Sci Technol Lett. 2014;1(9):351-5. doi: 10.1021/ez500244n.
-
(2014)
Environ Sci Technol Lett
, vol.1
, Issue.9
, pp. 351-355
-
-
Doud, D.F.R.1
Angenent, L.T.2
-
67
-
-
84874589923
-
Cultivation of an obligate fe(II)-oxidizing lithoautotrophic bacterium using electrodes
-
Summers ZM, Gralnick JA, Bond DR. Cultivation of an obligate fe(ii)-oxidizing lithoautotrophic bacterium using electrodes. mBio. 2013;4(1). doi: 10.1128/mBio.00420-12.
-
(2013)
MBio.
, vol.4
, Issue.1
-
-
Summers, Z.M.1
Gralnick, J.A.2
Bond, D.R.3
-
68
-
-
1542378939
-
Iron corrosion by novel anaerobic microorganisms
-
10.1038/nature02321 1:CAS:528:DC%2BD2cXhsFCis7g%3D
-
Dinh HT, Kuever J, Muszmann M, Hassel AW, Stratmann M, Widdel F. Iron corrosion by novel anaerobic microorganisms. Nature. 2004;427(6977):829-32. doi: 10.1038/nature02321.
-
(2004)
Nature
, vol.427
, Issue.6977
, pp. 829-832
-
-
Dinh, H.T.1
Kuever, J.2
Muszmann, M.3
Hassel, A.W.4
Stratmann, M.5
Widdel, F.6
-
69
-
-
84868626806
-
Filamentous bacteria transport electrons over centimetre distances
-
10.1038/nature11586 1:CAS:528:DC%2BC38XhsFOmt7fN
-
Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, et al. Filamentous bacteria transport electrons over centimetre distances. Nature. 2012;491(7423):218-21. doi: 10.1038/nature11586.
-
(2012)
Nature
, vol.491
, Issue.7423
, pp. 218-221
-
-
Pfeffer, C.1
Larsen, S.2
Song, J.3
Dong, M.4
Besenbacher, F.5
Meyer, R.L.6
-
70
-
-
84879761216
-
Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone
-
10.1039/C3CC42570C 1:CAS:528:DC%2BC3sXhtVWmur3P
-
Sharma M, Aryal N, Sarma PM, Vanbroekhoven K, Lal B, Benetton XD, et al. Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone. Chem Commun. 2013;49(58):6495-7. doi: 10.1039/C3CC42570C.
-
(2013)
Chem Commun
, vol.49
, Issue.58
, pp. 6495-6497
-
-
Sharma, M.1
Aryal, N.2
Sarma, P.M.3
Vanbroekhoven, K.4
Lal, B.5
Benetton, X.D.6
-
71
-
-
84961291573
-
Electrochemical characterization of direct electron uptake in electrical microbially influenced corrosion of iron by the lithoautotrophic SRB Desulfopila corrodens strain IS4
-
10.1016/j.electacta.2015.03.184 1:CAS:528:DC%2BC2MXlsVOmtbc%3D
-
Beese-Vasbender PF, Nayak S, Erbe A, Stratmann M, Mayrhofer KJJ. Electrochemical characterization of direct electron uptake in electrical microbially influenced corrosion of iron by the lithoautotrophic SRB Desulfopila corrodens strain IS4. Electrochim Acta. 2015;167:321-9. doi: 10.1016/j.electacta.2015.03.184.
-
(2015)
Electrochim Acta
, vol.167
, pp. 321-329
-
-
Beese-Vasbender, P.F.1
Nayak, S.2
Erbe, A.3
Stratmann, M.4
Mayrhofer, K.J.J.5
-
72
-
-
84927517075
-
Microbial electroreduction: Screening for new cathodic biocatalysts
-
10.1002/celc.201402239
-
Rodrigues TdC, Rosenbaum MA. Microbial electroreduction: screening for new cathodic biocatalysts. ChemElectroChem. 2014;1(11):1916-22. doi: 10.1002/celc.201402239.
-
(2014)
ChemElectroChem
, vol.1
, Issue.11
, pp. 1916-1922
-
-
Rodrigues, Td.C.1
Rosenbaum, M.A.2
-
73
-
-
84881404831
-
Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
-
10.1039/C3CP52697F 1:CAS:528:DC%2BC3sXht1WisrrP
-
Nie H, Zhang T, Cui M, Lu H, Lovley DR, Russell TP. Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys Chem Chem Phys. 2013;15(34):14290-4. doi: 10.1039/C3CP52697F.
-
(2013)
Phys Chem Chem Phys
, vol.15
, Issue.34
, pp. 14290-14294
-
-
Nie, H.1
Zhang, T.2
Cui, M.3
Lu, H.4
Lovley, D.R.5
Russell, T.P.6
-
74
-
-
84904753488
-
A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
-
10.1039/C4TA03101F 1:CAS:528:DC%2BC2cXhtVKmtbrP
-
Jourdin L, Freguia S, Donose BC, Chen J, Wallace GG, Keller J, et al. A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J Mater Chem A. 2014;2(32):13093-102. doi: 10.1039/C4TA03101F.
-
(2014)
J Mater Chem A
, vol.2
, Issue.32
, pp. 13093-13102
-
-
Jourdin, L.1
Freguia, S.2
Donose, B.C.3
Chen, J.4
Wallace, G.G.5
Keller, J.6
-
75
-
-
84875677796
-
The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems
-
10.1039/C3EE00052D 1:CAS:528:DC%2BC3sXks1Omsr0%3D
-
Flexer V, Chen J, Donose BC, Sherrell P, Wallace GG, Keller J. The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems. Energ Environ Sci. 2013;6(4):1291-8. doi: 10.1039/C3EE00052D.
-
(2013)
Energ Environ Sci
, vol.6
, Issue.4
, pp. 1291-1298
-
-
Flexer, V.1
Chen, J.2
Donose, B.C.3
Sherrell, P.4
Wallace, G.G.5
Keller, J.6
-
76
-
-
84929162125
-
Membrane-intercalating conjugated oligoelectrolytes: Impact on bioelectrochemical systems
-
n/a-n/a
-
Yan H, Catania C, Bazan GC. Membrane-intercalating conjugated oligoelectrolytes: Impact on bioelectrochemical systems. Adv Mater. 2015:n/a-n/a. doi: 10.1002/adma.201500487.
-
(2015)
Adv Mater.
-
-
Yan, H.1
Catania, C.2
Bazan, G.C.3
-
77
-
-
84947251258
-
High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide
-
10.1021/acs.est.5b03821
-
Jourdin L, Grieger T, Monetti J, Flexer V, Freguia S, Lu Y, et al. High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. Environ Sci Technol. 2015. doi: 10.1021/acs.est.5b03821.
-
(2015)
Environ Sci Technol
-
-
Jourdin, L.1
Grieger, T.2
Monetti, J.3
Flexer, V.4
Freguia, S.5
Lu, Y.6
-
78
-
-
84927615815
-
A graphene modified biocathode for enhancing hydrogen production
-
10.1039/C5RA02695D 1:CAS:528:DC%2BC2MXlsFCjsrg%3D
-
Su M, Wei L, Qiu Z, Jia Q, Shen J. A graphene modified biocathode for enhancing hydrogen production. RSC Advances. 2015;5(41):32609-14. doi: 10.1039/C5RA02695D.
-
(2015)
RSC Advances
, vol.5
, Issue.41
, pp. 32609-32614
-
-
Su, M.1
Wei, L.2
Qiu, Z.3
Jia, Q.4
Shen, J.5
-
79
-
-
77951806527
-
Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells
-
10.1021/es100125h 1:CAS:528:DC%2BC3cXktVWlu7g%3D
-
Foley JM, Rozendal RA, Hertle CK, Lant PA, Rabaey K. Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol. 2010;44(9):3629-37. doi: 10.1021/es100125h.
-
(2010)
Environ Sci Technol
, vol.44
, Issue.9
, pp. 3629-3637
-
-
Foley, J.M.1
Rozendal, R.A.2
Hertle, C.K.3
Lant, P.A.4
Rabaey, K.5
-
80
-
-
78650817486
-
An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects
-
10.1016/j.rser.2010.10.005 1:CAS:528:DC%2BC3MXhtVWnug%3D%3D
-
Pant D, Singh A, Van Bogaert G, Gallego YA, Diels L, Vanbroekhoven K. An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects. Renew Sust Energ Rev. 2011;15(2):1305-13. doi: 10.1016/j.rser.2010.10.005.
-
(2011)
Renew Sust Energ Rev
, vol.15
, Issue.2
, pp. 1305-1313
-
-
Pant, D.1
Singh, A.2
Van Bogaert, G.3
Gallego, Y.A.4
Diels, L.5
Vanbroekhoven, K.6
-
81
-
-
75349113313
-
Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures
-
10.1021/es902371e 1:CAS:528:DC%2BD1MXhsFShsrzF
-
Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol. 2010;44(1):513-7. doi: 10.1021/es902371e.
-
(2010)
Environ Sci Technol
, vol.44
, Issue.1
, pp. 513-517
-
-
Steinbusch, K.J.J.1
Hamelers, H.V.M.2
Schaap, J.D.3
Kampman, C.4
Buisman, C.J.N.5
-
82
-
-
0032904869
-
Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation
-
1:CAS:528:DyaK1MXisFyrs7c%3D
-
Park DH, Zeikus JG. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol. 1999;181(8):2403-10.
-
(1999)
J Bacteriol
, vol.181
, Issue.8
, pp. 2403-2410
-
-
Park, D.H.1
Zeikus, J.G.2
-
83
-
-
0033014983
-
Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production
-
1:CAS:528:DyaK1MXktlemt70%3D
-
Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol. 1999;65(7):2912-7.
-
(1999)
Appl Environ Microbiol
, vol.65
, Issue.7
, pp. 2912-2917
-
-
Park, D.H.1
Laivenieks, M.2
Guettler, M.V.3
Jain, M.K.4
Zeikus, J.G.5
-
84
-
-
0024997534
-
Enhanced propionate formation by Propionibacterium freudenreichii subsp. Freudenreichii in a three-electrode amperometric culture system
-
1:CAS:528:DyaK3cXlvV2kt7w%3D
-
Emde R, Schink B. Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl Environ Microbiol. 1990;56(9):2771-6.
-
(1990)
Appl Environ Microbiol
, vol.56
, Issue.9
, pp. 2771-2776
-
-
Emde, R.1
Schink, B.2
-
85
-
-
84923930357
-
Identifying target processes for microbial electrosynthesis by elementary mode analysis
-
10.1186/s12859-014-0410-2
-
Kracke F, Krömer JO. Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinform. 2014;15(1):410. doi: 10.1186/s12859-014-0410-2.
-
(2014)
BMC Bioinform
, vol.15
, Issue.1
, pp. 410
-
-
Kracke, F.1
Krömer, J.O.2
-
86
-
-
82355163525
-
Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode
-
10.1021/es202356w 1:CAS:528:DC%2BC3MXhtlyhurrE
-
Wang A-J, Cheng H-Y, Liang B, Ren N-Q, Cui D, Lin N, et al. Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environ Sci Technol. 2011;45(23):10186-93. doi: 10.1021/es202356w.
-
(2011)
Environ Sci Technol
, vol.45
, Issue.23
, pp. 10186-10193
-
-
Wang, A.-J.1
Cheng, H.-Y.2
Liang, B.3
Ren, N.-Q.4
Cui, D.5
Lin, N.6
-
87
-
-
84879816867
-
Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system
-
10.1128/aem.00569-13 1:CAS:528:DC%2BC3sXpvV2nsrk%3D
-
Dennis PG, Harnisch F, Yeoh YK, Tyson GW, Rabaey K. Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system. Appl Environ Microbiol. 2013;79(13):4008-14. doi: 10.1128/aem.00569-13.
-
(2013)
Appl Environ Microbiol
, vol.79
, Issue.13
, pp. 4008-4014
-
-
Dennis, P.G.1
Harnisch, F.2
Yeoh, Y.K.3
Tyson, G.W.4
Rabaey, K.5
-
88
-
-
85027920053
-
Direct electrochemical addressing of immobilized alcohol dehydrogenase for the heterogeneous bioelectrocatalytic reduction of butyraldehyde to butanol
-
10.1002/cctc.201402932 1:CAS:528:DC%2BC2MXktlGltb0%3D
-
Schlager S, Neugebauer H, Haberbauer M, Hinterberger G, Sariciftci NS. Direct electrochemical addressing of immobilized alcohol dehydrogenase for the heterogeneous bioelectrocatalytic reduction of butyraldehyde to butanol. ChemCatChem. 2015;7(6):967-71. doi: 10.1002/cctc.201402932.
-
(2015)
ChemCatChem
, vol.7
, Issue.6
, pp. 967-971
-
-
Schlager, S.1
Neugebauer, H.2
Haberbauer, M.3
Hinterberger, G.4
Sariciftci, N.S.5
-
89
-
-
80051941601
-
Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals
-
10.1038/nature10333 1:CAS:528:DC%2BC3MXhtVOkurbN
-
Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature. 2011;476(7360):355-9. doi: 10.1038/nature10333.
-
(2011)
Nature
, vol.476
, Issue.7360
, pp. 355-359
-
-
Dellomonaco, C.1
Clomburg, J.M.2
Miller, E.N.3
Gonzalez, R.4
-
90
-
-
84879759623
-
Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures
-
10.1021/sc300168z
-
Van Eerten-Jansen MCAA, Ter Heijne A, Grootscholten TIM, Steinbusch KJJ, Sleutels THJA, Hamelers HVM, et al. Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures. ACS Sustain Chem Eng. 2013;1(5):513-8. doi: 10.1021/sc300168z.
-
(2013)
ACS Sustain Chem Eng
, vol.1
, Issue.5
, pp. 513-518
-
-
Van Eerten-Jansen, M.C.A.A.1
Ter Heijne, A.2
Grootscholten, T.I.M.3
Steinbusch, K.J.J.4
Sleutels, T.H.J.A.5
Hamelers, H.V.M.6
-
91
-
-
84655162133
-
Acetate and propionate impact on the methanogenesis of landfill leachate and the reduction of clogging components
-
10.1016/j.biortech.2011.09.123 1:CAS:528:DC%2BC3MXhs1OlsLjO
-
Lozecznik S, Sparling R, Clark SP, VanGulck JF, Oleszkiewicz JA. Acetate and propionate impact on the methanogenesis of landfill leachate and the reduction of clogging components. Biores Technol. 2012;104:37-43. doi: 10.1016/j.biortech.2011.09.123.
-
(2012)
Biores Technol
, vol.104
, pp. 37-43
-
-
Lozecznik, S.1
Sparling, R.2
Clark, S.P.3
VanGulck, J.F.4
Oleszkiewicz, J.A.5
-
92
-
-
84879761216
-
Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone
-
10.1039/C3CC42570C 1:CAS:528:DC%2BC3sXhtVWmur3P
-
Sharma M, Aryal N, Sarma PM, Vanbroekhoven K, Lal B, Benetton XD, et al. Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone. Chem Commun. 2013;49(58):6495-7. doi: 10.1039/C3CC42570C.
-
(2013)
Chem Commun
, vol.49
, Issue.58
, pp. 6495-6497
-
-
Sharma, M.1
Aryal, N.2
Sarma, P.M.3
Vanbroekhoven, K.4
Lal, B.5
Benetton, X.D.6
-
93
-
-
84885152223
-
Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol
-
10.1021/es402132r 1:CAS:528:DC%2BC3sXht1OjurbP
-
Zhou M, Chen J, Freguia S, Rabaey K, Keller J. Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol. Environ Sci Technol. 2013;47(19):11199-205. doi: 10.1021/es402132r.
-
(2013)
Environ Sci Technol
, vol.47
, Issue.19
, pp. 11199-11205
-
-
Zhou, M.1
Chen, J.2
Freguia, S.3
Rabaey, K.4
Keller, J.5
-
94
-
-
84868310570
-
Microaerophilic microenvironment at biocathode enhances electrogenesis with simultaneous synthesis of polyhydroxyalkanoates (PHA) in bioelectrochemical system (BES)
-
Srikanth S, Venkateswar Reddy M, Venkata Mohan S. Microaerophilic microenvironment at biocathode enhances electrogenesis with simultaneous synthesis of polyhydroxyalkanoates (PHA) in bioelectrochemical system (BES). Biores Technol. 2012;125:291-9. doi: 10.1016/j.biortech.2012.08.060.
-
(2012)
Biores Technol.
, vol.125
, pp. 291-299
-
-
Srikanth, S.1
Venkateswar Reddy, M.2
Venkata Mohan, S.3
-
95
-
-
80052470228
-
Extremely thermophilic routes to microbial electrofuels
-
10.1021/cs2003017 1:CAS:528:DC%2BC3MXpvFSms7k%3D
-
Hawkins AS, Han Y, Lian H, Loder AJ, Menon AL, Iwuchukwu IJ, et al. Extremely thermophilic routes to microbial electrofuels. ACS Catal. 2011;1(9):1043-50. doi: 10.1021/cs2003017.
-
(2011)
ACS Catal
, vol.1
, Issue.9
, pp. 1043-1050
-
-
Hawkins, A.S.1
Han, Y.2
Lian, H.3
Loder, A.J.4
Menon, A.L.5
Iwuchukwu, I.J.6
-
97
-
-
84878655703
-
Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals
-
10.1016/j.copbio.2013.02.017 1:CAS:528:DC%2BC3sXkt1Krt74%3D
-
Hawkins AS, McTernan PM, Lian H, Kelly RM, Adams MWW. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals. Curr Opin Biotech. 2013;24(3):376-84. doi: 10.1016/j.copbio.2013.02.017.
-
(2013)
Curr Opin Biotech
, vol.24
, Issue.3
, pp. 376-384
-
-
Hawkins, A.S.1
McTernan, P.M.2
Lian, H.3
Kelly, R.M.4
Adams, M.W.W.5
-
98
-
-
84927559065
-
Electrifying microbes for the production of chemicals
-
10.3389/fmicb.2015.00201
-
Tremblay P-L, Zhang T. Electrifying microbes for the production of chemicals. Front Microbiol. 2015. doi: 10.3389/fmicb.2015.00201.
-
(2015)
Front Microbiol.
-
-
Tremblay, P.-L.1
Zhang, T.2
-
99
-
-
84878648156
-
Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
-
10.1021/es400341b 1:CAS:528:DC%2BC3sXmsFelsr0%3D
-
Marshall CW, Ross DE, Fichot EB, Norman RS, May HD. Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ Sci Technol. 2013;47(11):6023-9. doi: 10.1021/es400341b.
-
(2013)
Environ Sci Technol
, vol.47
, Issue.11
, pp. 6023-6029
-
-
Marshall, C.W.1
Ross, D.E.2
Fichot, E.B.3
Norman, R.S.4
May, H.D.5
-
100
-
-
84930010858
-
Microbial electrosynthesis of butyrate from carbon dioxide
-
10.1039/C4CC10121A 1:CAS:528:DC%2BC2MXntVSmtA%3D%3D
-
Ganigue R, Puig S, Batlle-Vilanova P, Balaguer MD, Colprim J. Microbial electrosynthesis of butyrate from carbon dioxide. Chem Commun. 2015;51(15):3235-8. doi: 10.1039/C4CC10121A.
-
(2015)
Chem Commun
, vol.51
, Issue.15
, pp. 3235-3238
-
-
Ganigue, R.1
Puig, S.2
Batlle-Vilanova, P.3
Balaguer, M.D.4
Colprim, J.5
-
101
-
-
84923676034
-
Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system
-
10.1073/pnas.1424872112 1:CAS:528:DC%2BC2MXitlagsLc%3D
-
Torella JP, Gagliardi CJ, Chen JS, Bediako DK, Colón B, Way JC, et al. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc Natl Acad Sci. 2015;112(8):2337-42. doi: 10.1073/pnas.1424872112.
-
(2015)
Proc Natl Acad Sci
, vol.112
, Issue.8
, pp. 2337-2342
-
-
Torella, J.P.1
Gagliardi, C.J.2
Chen, J.S.3
Bediako, D.K.4
Colón, B.5
Way, J.C.6
-
102
-
-
84862551526
-
Evaluation of microbial fuel cell Shewanella biocathodes for treatment of chromate contamination
-
10.1039/C2RA20478A 1:CAS:528:DC%2BC38Xos1SrsL4%3D
-
Hsu L, Masuda SA, Nealson KH, Pirbazari M. Evaluation of microbial fuel cell Shewanella biocathodes for treatment of chromate contamination. RSC Adv. 2012;2(13):5844-55. doi: 10.1039/C2RA20478A.
-
(2012)
RSC Adv
, vol.2
, Issue.13
, pp. 5844-5855
-
-
Hsu, L.1
Masuda, S.A.2
Nealson, K.H.3
Pirbazari, M.4
-
103
-
-
40949122427
-
Hydrogen production with a microbial biocathode
-
10.1021/es071720+ 1:CAS:528:DC%2BD1cXjt1aluw%3D%3D
-
Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN. Hydrogen production with a microbial biocathode. Environ Sci Technol. 2008;42(2):629-34. doi: 10.1021/es071720+.
-
(2008)
Environ Sci Technol
, vol.42
, Issue.2
, pp. 629-634
-
-
Rozendal, R.A.1
Jeremiasse, A.W.2
Hamelers, H.V.M.3
Buisman, C.J.N.4
-
104
-
-
77649235028
-
Microbial electrolysis cell with a microbial biocathode
-
10.1016/j.bioelechem.2009.05.005 1:CAS:528:DC%2BC3cXjtVWiurw%3D
-
Jeremiasse AW, Hamelers HVM, Buisman CJN. Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry. 2010;78(1):39-43. doi: 10.1016/j.bioelechem.2009.05.005.
-
(2010)
Bioelectrochemistry
, vol.78
, Issue.1
, pp. 39-43
-
-
Jeremiasse, A.W.1
Hamelers, H.V.M.2
Buisman, C.J.N.3
-
105
-
-
84859817350
-
2: Long-term performance and perspectives
-
10.1002/er.1954
-
Van Eerten-Jansen MCAA, Heijne AT, Buisman CJN, Hamelers HVM. Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives. Int J Energy Res. 2012;36(6):809-19. doi: 10.1002/er.1954.
-
(2012)
Int J Energy Res
, vol.36
, Issue.6
, pp. 809-819
-
-
Van Eerten-Jansen, M.C.A.A.1
Heijne, A.T.2
Buisman, C.J.N.3
Hamelers, H.V.M.4
-
106
-
-
79955675417
-
Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
-
10.1128/aem.02642-10 1:CAS:528:DC%2BC3MXhtVeju7bF
-
Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microb. 2011;77(9):2882-6. doi: 10.1128/aem.02642-10.
-
(2011)
Appl Environ Microb
, vol.77
, Issue.9
, pp. 2882-2886
-
-
Nevin, K.P.1
Hensley, S.A.2
Franks, A.E.3
Summers, Z.M.4
Ou, J.5
Woodard, T.L.6
-
107
-
-
78650173757
-
Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
-
Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio. 2010;1(2). doi: 10.1128/mBio.00103-10.
-
(2010)
MBio
, vol.1
, Issue.2
-
-
Nevin, K.P.1
Woodard, T.L.2
Franks, A.E.3
Summers, Z.M.4
Lovley, D.R.5
-
108
-
-
84872760339
-
Bio-electrochemical conversion of carbon dioxide to methane in geological storage reservoirs
-
10.1016/j.enconman.2012.12.008 1:CAS:528:DC%2BC3sXjtlKkt7o%3D
-
Sato K, Kawaguchi H, Kobayashi H. Bio-electrochemical conversion of carbon dioxide to methane in geological storage reservoirs. Energy Convers Manag. 2013;66:343-50. doi: 10.1016/j.enconman.2012.12.008.
-
(2013)
Energy Convers Manag
, vol.66
, pp. 343-350
-
-
Sato, K.1
Kawaguchi, H.2
Kobayashi, H.3
-
109
-
-
0041344634
-
Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: Expression in Escherichia coli confers the ability to reduce soluble Fe(III) chelates
-
10.1074/jbc.M302582200 1:CAS:528:DC%2BD3sXlsFKktLc%3D
-
Pitts KE, Dobbin PS, Reyes-Ramirez F, Thomson AJ, Richardson DJ, Seward HE. Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: expression in Escherichia coli confers the ability to reduce soluble Fe(III) chelates. J Biol Chem. 2003;278(30):27758-65. doi: 10.1074/jbc.M302582200.
-
(2003)
J Biol Chem
, vol.278
, Issue.30
, pp. 27758-27765
-
-
Pitts, K.E.1
Dobbin, P.S.2
Reyes-Ramirez, F.3
Thomson, A.J.4
Richardson, D.J.5
Seward, H.E.6
-
110
-
-
44349112274
-
Redox-reactive membrane vesicles produced by Shewanella
-
10.1111/j.1472-4669.2008.00158.x 1:CAS:528:DC%2BD1cXotlCrsr0%3D
-
Gorby Y, McLean J, Korenevsky A, Rosso K, El-Naggar MY, Beveridge TJ. Redox-reactive membrane vesicles produced by Shewanella. Geobiology. 2008;6(3):232-41. doi: 10.1111/j.1472-4669.2008.00158.x.
-
(2008)
Geobiology
, vol.6
, Issue.3
, pp. 232-241
-
-
Gorby, Y.1
McLean, J.2
Korenevsky, A.3
Rosso, K.4
El-Naggar, M.Y.5
Beveridge, T.J.6
-
111
-
-
34548393635
-
Characterization of Shewanella oneidensis MtrC: A cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors
-
10.1007/s00775-007-0278-y 1:CAS:528:DC%2BD2sXpvVagtLg%3D
-
Hartshorne R, Jepson B, Clarke T, Field S, Fredrickson J, Zachara J, et al. Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors. JBIC, J Biol Inorg Chem. 2007;12(7):1083-94. doi: 10.1007/s00775-007-0278-y.
-
(2007)
JBIC, J Biol Inorg Chem
, vol.12
, Issue.7
, pp. 1083-1094
-
-
Hartshorne, R.1
Jepson, B.2
Clarke, T.3
Field, S.4
Fredrickson, J.5
Zachara, J.6
|