메뉴 건너뛰기




Volumn 9, Issue 1, 2016, Pages

Extracellular electron transfer from cathode to microbes: Application for biofuel production

Author keywords

Bioelectrochemical synthesis; Cathodic electron; Electrofuel; Extracellular electron transfer

Indexed keywords

CARBON; CATHODES; ELECTRODES; ELECTRON TRANSITIONS; ELECTRONS; MICROORGANISMS; NITROGEN FIXATION; SOLAR ENERGY;

EID: 84954356954     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-016-0426-0     Document Type: Article
Times cited : (242)

References (111)
  • 1
    • 84884576600 scopus 로고    scopus 로고
    • Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels
    • 10.1039/C3EE41847B 1:CAS:528:DC%2BC3sXhsV2it7nK
    • Li H, Liao JC. Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels. Energ Environ Sci. 2013;6(10):2892-9. doi: 10.1039/C3EE41847B.
    • (2013) Energ Environ Sci , vol.6 , Issue.10 , pp. 2892-2899
    • Li, H.1    Liao, J.C.2
  • 3
    • 84926683751 scopus 로고    scopus 로고
    • Microbial electrochemistry and technology: Terminology and classification
    • 10.1039/C4EE03359K
    • Schroder U, Harnisch F, Angenent LT. Microbial electrochemistry and technology: terminology and classification. Energ Environ Sci. 2015;8(2):513-9. doi: 10.1039/C4EE03359K.
    • (2015) Energ Environ Sci , vol.8 , Issue.2 , pp. 513-519
    • Schroder, U.1    Harnisch, F.2    Angenent, L.T.3
  • 4
    • 84927511397 scopus 로고    scopus 로고
    • Syntrophic growth via quinone-mediated interspecies electron transfer
    • 10.3389/fmicb.2015.00121
    • Smith JA, Nevin KP, Lovley DR. Syntrophic growth via quinone-mediated interspecies electron transfer. Front in Microbiol. 2015;6:121. doi: 10.3389/fmicb.2015.00121.
    • (2015) Front in Microbiol , vol.6 , pp. 121
    • Smith, J.A.1    Nevin, K.P.2    Lovley, D.R.3
  • 5
    • 29144460324 scopus 로고    scopus 로고
    • Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus
    • 10.1128/aem.71.12.7838-7845.2005
    • Si Ishii, Kosaka T, Hori K, Hotta Y, Watanabe K. Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl Environ Microbiol. 2005;71(12):7838-45. doi: 10.1128/aem.71.12.7838-7845.2005.
    • (2005) Appl Environ Microbiol , vol.71 , Issue.12 , pp. 7838-7845
    • Si, I.1    Kosaka, T.2    Hori, K.3    Hotta, Y.4    Watanabe, K.5
  • 6
    • 84939508623 scopus 로고    scopus 로고
    • Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: A novel approach to the bioremediation of arsenic-polluted groundwater
    • 10.1016/j.jhazmat.2014.10.014 1:CAS:528:DC%2BC2cXhvVSqt73L
    • Pous N, Casentini B, Rossetti S, Fazi S, Puig S, Aulenta F. Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: a novel approach to the bioremediation of arsenic-polluted groundwater. J Hazard Mater. 2015;283:617-22. doi: 10.1016/j.jhazmat.2014.10.014.
    • (2015) J Hazard Mater , vol.283 , pp. 617-622
    • Pous, N.1    Casentini, B.2    Rossetti, S.3    Fazi, S.4    Puig, S.5    Aulenta, F.6
  • 7
    • 33644947596 scopus 로고    scopus 로고
    • Exocellular electron transfer in anaerobic microbial communities
    • 10.1111/j.1462-2920.2006.00989.x 1:CAS:528:DC%2BD28XjsFOqsLo%3D
    • Stams AJM, De Bok FAM, Plugge CM, Van Eekert MHA, Dolfing J, Schraa G. Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol. 2006;8(3):371-82. doi: 10.1111/j.1462-2920.2006.00989.x.
    • (2006) Environ Microbiol , vol.8 , Issue.3 , pp. 371-382
    • Stams, A.J.M.1    De Bok, F.A.M.2    Plugge, C.M.3    Van Eekert, M.H.A.4    Dolfing, J.5    Schraa, G.6
  • 8
    • 0001462037 scopus 로고
    • Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent
    • 10.1007/BF01024638 1:CAS:528:DyaL1cXhs1Cmtrk%3D
    • Kim T, Kim B. Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent. Biotechnol Lett. 1988;10(2):123-8. doi: 10.1007/BF01024638.
    • (1988) Biotechnol Lett , vol.10 , Issue.2 , pp. 123-128
    • Kim, T.1    Kim, B.2
  • 9
    • 0028201690 scopus 로고
    • Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol
    • 10.1128/JB.183.5.1748-1754.2001 1:CAS:528:DyaK2cXitl2rtL8%3D
    • Vasconcelos I, Girbal L, Soucaille P. Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol. 1994;176(5):1443-50. doi: 10.1128/JB.183.5.1748-1754.2001.
    • (1994) J Bacteriol , vol.176 , Issue.5 , pp. 1443-1450
    • Vasconcelos, I.1    Girbal, L.2    Soucaille, P.3
  • 10
    • 34250639301 scopus 로고    scopus 로고
    • Respiration of metal (hydr)oxides by Shewanella and Geobacter: A key role for multihaem c-type cytochromes
    • 10.1111/j.1365-2958.2007.05783.x 1:CAS:528:DC%2BD2sXnslyjtr0%3D
    • Shi L, Squier TC, Zachara JM, Fredrickson JK. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol. 2007;65(1):12-20. doi: 10.1111/j.1365-2958.2007.05783.x.
    • (2007) Mol Microbiol , vol.65 , Issue.1 , pp. 12-20
    • Shi, L.1    Squier, T.C.2    Zachara, J.M.3    Fredrickson, J.K.4
  • 11
    • 21344461500 scopus 로고    scopus 로고
    • Extracellular electron transfer via microbial nanowires
    • 10.1038/nature03661 1:CAS:528:DC%2BD2MXltl2ntrc%3D
    • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. Extracellular electron transfer via microbial nanowires. Nature. 2005;435(7045):1098-101. doi: 10.1038/nature03661.
    • (2005) Nature , vol.435 , Issue.7045 , pp. 1098-1101
    • Reguera, G.1    McCarthy, K.D.2    Mehta, T.3    Nicoll, J.S.4    Tuominen, M.T.5    Lovley, D.R.6
  • 12
    • 0026740398 scopus 로고
    • Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1
    • 1:CAS:528:DyaK38XksVChsrg%3D
    • Myers CR, Myers JM. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol. 1992;174(11):3429-38.
    • (1992) J Bacteriol , vol.174 , Issue.11 , pp. 3429-3438
    • Myers, C.R.1    Myers, J.M.2
  • 14
    • 41649085415 scopus 로고    scopus 로고
    • Shewanella secretes flavins that mediate extracellular electron transfer
    • 10.1073/pnas.0710525105 1:CAS:528:DC%2BD1cXjs1Oms7g%3D
    • Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci. 2008;105(10):3968-73. doi: 10.1073/pnas.0710525105.
    • (2008) Proc Natl Acad Sci , vol.105 , Issue.10 , pp. 3968-3973
    • Marsili, E.1    Baron, D.B.2    Shikhare, I.D.3    Coursolle, D.4    Gralnick, J.A.5    Bond, D.R.6
  • 15
    • 84865389363 scopus 로고    scopus 로고
    • Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor
    • 10.1002/bit.24520 1:CAS:528:DC%2BC38XmtVKku7w%3D
    • Choi O, Um Y, Sang B-I. Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor. Biotechnol Bioeng. 2012;109(10):2494-502. doi: 10.1002/bit.24520.
    • (2012) Biotechnol Bioeng , vol.109 , Issue.10 , pp. 2494-2502
    • Choi, O.1    Um, Y.2    Sang, B.-I.3
  • 16
    • 79953277727 scopus 로고    scopus 로고
    • Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: Characterization by infrared spectroscopy and proteomics
    • 10.1111/j.1462-2920.2010.02407.x 1:CAS:528:DC%2BC3MXmtV2jsbo%3D
    • Cao B, Shi L, Brown RN, Xiong Y, Fredrickson JK, Romine MF, et al. Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: characterization by infrared spectroscopy and proteomics. Environ Microbiol. 2011;13(4):1018-31. doi: 10.1111/j.1462-2920.2010.02407.x.
    • (2011) Environ Microbiol , vol.13 , Issue.4 , pp. 1018-1031
    • Cao, B.1    Shi, L.2    Brown, R.N.3    Xiong, Y.4    Fredrickson, J.K.5    Romine, M.F.6
  • 17
    • 33746624663 scopus 로고    scopus 로고
    • Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms
    • 10.1073/pnas.0604517103 1:CAS:528:DC%2BD28XnvVarsrs%3D
    • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci. 2006;103(30):11358-63. doi: 10.1073/pnas.0604517103.
    • (2006) Proc Natl Acad Sci , vol.103 , Issue.30 , pp. 11358-11363
    • Gorby, Y.A.1    Yanina, S.2    McLean, J.S.3    Rosso, K.M.4    Moyles, D.5    Dohnalkova, A.6
  • 18
    • 84877622906 scopus 로고    scopus 로고
    • Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate
    • 10.1021/es304606u 1:CAS:528:DC%2BC3sXktlKjsLc%3D
    • Xafenias N, Zhang Y, Banks CJ. Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate. Environ Sci Technol. 2013;47(9):4512-20. doi: 10.1021/es304606u.
    • (2013) Environ Sci Technol , vol.47 , Issue.9 , pp. 4512-4520
    • Xafenias, N.1    Zhang, Y.2    Banks, C.J.3
  • 19
    • 27744521813 scopus 로고    scopus 로고
    • Remediation and recovery of uranium from contaminated subsurface environments with electrodes
    • 10.1021/es050457e 1:CAS:528:DC%2BD2MXhtV2nurzP
    • Gregory KB, Lovley DR. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol. 2005;39(22):8943-7. doi: 10.1021/es050457e.
    • (2005) Environ Sci Technol , vol.39 , Issue.22 , pp. 8943-8947
    • Gregory, K.B.1    Lovley, D.R.2
  • 20
    • 79551652545 scopus 로고    scopus 로고
    • Towards electrosynthesis in Shewanella: Energetics of reversing the Mtr pathway for reductive metabolism
    • 10.1371/journal.pone.0016649 1:CAS:528:DC%2BC3MXitVGiu74%3D
    • Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR. Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One. 2011;6(2):e16649. doi: 10.1371/journal.pone.0016649.
    • (2011) PLoS One , vol.6 , Issue.2 , pp. e16649
    • Ross, D.E.1    Flynn, J.M.2    Baron, D.B.3    Gralnick, J.A.4    Bond, D.R.5
  • 21
    • 78650170320 scopus 로고    scopus 로고
    • Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens
    • 10.1016/j.bioelechem.2010.07.005 1:CAS:528:DC%2BC3cXhsF2htLbJ
    • Strycharz SM, Glaven RH, Coppi MV, Gannon SM, Perpetua LA, Liu A, et al. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry. 2011;80(2):142-50. doi: 10.1016/j.bioelechem.2010.07.005.
    • (2011) Bioelectrochemistry , vol.80 , Issue.2 , pp. 142-150
    • Strycharz, S.M.1    Glaven, R.H.2    Coppi, M.V.3    Gannon, S.M.4    Perpetua, L.A.5    Liu, A.6
  • 22
    • 82355191731 scopus 로고    scopus 로고
    • Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell
    • 10.1007/s00253-011-3583-x 1:CAS:528:DC%2BC3MXhsVelt7fO
    • Croese E, Pereira M, Euverink G-J, Stams AM, Geelhoed J. Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell. Appl Microbiol Biotechnol. 2011;92(5):1083-93. doi: 10.1007/s00253-011-3583-x.
    • (2011) Appl Microbiol Biotechnol , vol.92 , Issue.5 , pp. 1083-1093
    • Croese, E.1    Pereira, M.2    Euverink, G.-J.3    Stams, A.M.4    Geelhoed, J.5
  • 23
    • 43949088801 scopus 로고    scopus 로고
    • Application of biocathode in microbial fuel cells: Cell performance and microbial community
    • 10.1007/s00253-008-1451-0 1:CAS:528:DC%2BD1cXlvF2ku7s%3D
    • Chen G-W, Choi S-J, Lee T-H, Lee G-Y, Cha J-H, Kim C-W. Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl Microbiol Biotechnol. 2008;79(3):379-88. doi: 10.1007/s00253-008-1451-0.
    • (2008) Appl Microbiol Biotechnol , vol.79 , Issue.3 , pp. 379-388
    • Chen, G.-W.1    Choi, S.-J.2    Lee, T.-H.3    Lee, G.-Y.4    Cha, J.-H.5    Kim, C.-W.6
  • 24
    • 84923349564 scopus 로고    scopus 로고
    • Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum
    • 10.1038/srep06961
    • Choi O, Kim T, Woo HM, Um Y. Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum. Sci Rep. 2014;. doi: 10.1038/srep06961.
    • (2014) Sci Rep
    • Choi, O.1    Kim, T.2    Woo, H.M.3    Um, Y.4
  • 25
    • 0005343139 scopus 로고
    • Direct electrochemical reduction of ferredoxin promoted by Mg2+
    • 10.1016/0014-5793(82)80175-0 1:CAS:528:DyaL38XlsFygtLs%3D
    • Armstrong FA, Hill HAO, Walton NJ. Direct electrochemical reduction of ferredoxin promoted by Mg2+. FEBS Lett. 1982;145(2):241-4. doi: 10.1016/0014-5793(82)80175-0.
    • (1982) FEBS Lett , vol.145 , Issue.2 , pp. 241-244
    • Armstrong, F.A.1    Hill, H.A.O.2    Walton, N.J.3
  • 26
    • 70449714760 scopus 로고    scopus 로고
    • The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer
    • 10.1111/j.1758-2229.2009.00035.x 1:CAS:528:DC%2BC3cXjtFWgtbo%3D
    • Shi L, Richardson DJ, Wang Z, Kerisit SN, Rosso KM, Zachara JM, et al. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ Microbiol Rep. 2009;1(4):220-7. doi: 10.1111/j.1758-2229.2009.00035.x.
    • (2009) Environ Microbiol Rep , vol.1 , Issue.4 , pp. 220-227
    • Shi, L.1    Richardson, D.J.2    Wang, Z.3    Kerisit, S.N.4    Rosso, K.M.5    Zachara, J.M.6
  • 27
    • 84930637931 scopus 로고    scopus 로고
    • The structure of PccH from Geobacter sulfurreducens: A novel low reduction potential monoheme cytochrome essential for accepting electrons from an electrode
    • n/a-n/a
    • Dantas JM, Campelo LM, Duke NEC, Salgueiro CA, Pokkuluri PR. The structure of PccH from Geobacter sulfurreducens: A novel low reduction potential monoheme cytochrome essential for accepting electrons from an electrode. FEBS J. 2015:n/a-n/a. doi: 10.1111/febs.13269.
    • (2015) FEBS J.
    • Dantas, J.M.1    Campelo, L.M.2    Nec, D.3    Salgueiro, C.A.4    Pokkuluri, P.R.5
  • 28
    • 84881476373 scopus 로고    scopus 로고
    • Functional characterization of PccH, a key cytochrome for electron transfer from electrodes to the bacterium Geobacter sulfurreducens
    • 10.1016/j.febslet.2013.07.003 1:CAS:528:DC%2BC3sXhtFKlt73I
    • Dantas JM, Tomaz DM, Morgado L, Salgueiro CA. Functional characterization of PccH, a key cytochrome for electron transfer from electrodes to the bacterium Geobacter sulfurreducens. FEBS Lett. 2013;587(16):2662-8. doi: 10.1016/j.febslet.2013.07.003.
    • (2013) FEBS Lett , vol.587 , Issue.16 , pp. 2662-2668
    • Dantas, J.M.1    Tomaz, D.M.2    Morgado, L.3    Salgueiro, C.A.4
  • 29
    • 84920251610 scopus 로고    scopus 로고
    • Electroactive bacteria - Molecular mechanisms and genetic tools
    • 10.1007/s00253-014-6005-z 1:CAS:528:DC%2BC2cXhtlOrtbnJ
    • Sydow A, Krieg T, Mayer F, Schrader J, Holtmann D. Electroactive bacteria - molecular mechanisms and genetic tools. Appl Microbiol Biotechnol. 2014;98(20):8481-95. doi: 10.1007/s00253-014-6005-z.
    • (2014) Appl Microbiol Biotechnol , vol.98 , Issue.20 , pp. 8481-8495
    • Sydow, A.1    Krieg, T.2    Mayer, F.3    Schrader, J.4    Holtmann, D.5
  • 30
    • 84874639721 scopus 로고    scopus 로고
    • + oxidoreductase essential for autotrophic growth
    • 10.1128/mBio.00406-12
    • Tremblay PL, Zhang T, Dar SA, Leang C, Lovley DR. The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:nAD+ oxidoreductase essential for autotrophic growth. MBio. 2012;4(1):e00406-12. doi: 10.1128/mBio.00406-12.
    • (2012) MBio , vol.4 , Issue.1 , pp. e00406-e00412
    • Tremblay, P.L.1    Zhang, T.2    Dar, S.A.3    Leang, C.4    Lovley, D.R.5
  • 31
    • 84893192215 scopus 로고    scopus 로고
    • Studies on the mechanism of electron bifurcation catalyzed by electron transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) of Acidaminococcus fermentans
    • 10.1074/jbc.M113.521013 1:CAS:528:DC%2BC2cXivF2lurY%3D
    • Chowdhury NP, Mowafy AM, Demmer JK, Upadhyay V, Koelzer S, Jayamani E, et al. Studies on the mechanism of electron bifurcation catalyzed by electron transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) of Acidaminococcus fermentans. J Biol Chem. 2014;289(8):5145-57. doi: 10.1074/jbc.M113.521013.
    • (2014) J Biol Chem , vol.289 , Issue.8 , pp. 5145-5157
    • Chowdhury, N.P.1    Mowafy, A.M.2    Demmer, J.K.3    Upadhyay, V.4    Koelzer, S.5    Jayamani, E.6
  • 32
    • 84871712835 scopus 로고    scopus 로고
    • Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation
    • 10.1016/j.bbabio.2012.07.002 1:CAS:528:DC%2BC38XhtFahs77I
    • Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochim Biophys Acta. 2013;1827(2):94-113. doi: 10.1016/j.bbabio.2012.07.002.
    • (2013) Biochim Biophys Acta , vol.1827 , Issue.2 , pp. 94-113
    • Buckel, W.1    Thauer, R.K.2
  • 33
    • 84924328742 scopus 로고    scopus 로고
    • A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui
    • 10.1186/1471-2164-15-1139
    • Hess V, Poehlein A, Weghoff MC, Daniel R, Muller V. A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui. BMC Genom. 2014;15:1139. doi: 10.1186/1471-2164-15-1139.
    • (2014) BMC Genom , vol.15 , pp. 1139
    • Hess, V.1    Poehlein, A.2    Weghoff, M.C.3    Daniel, R.4    Muller, V.5
  • 34
    • 84871587989 scopus 로고    scopus 로고
    • The origin of membrane bioenergetics
    • 10.1016/j.cell.2012.11.050 1:CAS:528:DC%2BC38XhvVymu7nI
    • Lane N, Martin William F. The origin of membrane bioenergetics. Cell. 2012;151(7):1406-16. doi: 10.1016/j.cell.2012.11.050.
    • (2012) Cell , vol.151 , Issue.7 , pp. 1406-1416
    • Lane, N.1    Martin William, F.2
  • 35
    • 84928393116 scopus 로고    scopus 로고
    • Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii
    • 10.1128/jb.00048-15 1:CAS:528:DC%2BC2MXntFWqsb8%3D
    • Bertsch J, Oppinger C, Hess V, Langer JD, Muller V. Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii. J Bacteriol. 2015;197(9):1681-9. doi: 10.1128/jb.00048-15.
    • (2015) J Bacteriol , vol.197 , Issue.9 , pp. 1681-1689
    • Bertsch, J.1    Oppinger, C.2    Hess, V.3    Langer, J.D.4    Muller, V.5
  • 36
    • 84936993627 scopus 로고    scopus 로고
    • Microbial electron transport and energy conservation - The foundation for optimizing bioelectrochemical systems
    • 10.3389/fmicb.2015.00575
    • Kracke F, Vassilev I, Krömer JO. Microbial electron transport and energy conservation - the foundation for optimizing bioelectrochemical systems. Front Microbiol. 2015. doi: 10.3389/fmicb.2015.00575.
    • (2015) Front Microbiol.
    • Kracke, F.1    Vassilev, I.2    Krömer, J.O.3
  • 37
    • 0013788501 scopus 로고
    • Rubredoxin: A new electron transfer protein from Clostridium pasteurianum
    • 1:CAS:528:DyaF2MXkvVWrsbY%3D
    • Lovenberg W, Sobel BE. Rubredoxin: a new electron transfer protein from Clostridium pasteurianum. P Natl Acad Sci USA. 1965;54(1):193-9.
    • (1965) P Natl Acad Sci USA , vol.54 , Issue.1 , pp. 193-199
    • Lovenberg, W.1    Sobel, B.E.2
  • 38
    • 3042830017 scopus 로고    scopus 로고
    • The unique hydrogen bonded water in the reduced form of Clostridium pasteurianum rubredoxin and its possible role in electron transfer
    • 10.1007/s00775-004-0542-3 1:CAS:528:DC%2BD2cXksVSnsLs%3D
    • Park I, Youn B, Harley J, Eidsness M, Smith E, Ichiye T, et al. The unique hydrogen bonded water in the reduced form of Clostridium pasteurianum rubredoxin and its possible role in electron transfer. JBIC, J Biol Inorg Chem. 2004;9(4):423-8. doi: 10.1007/s00775-004-0542-3.
    • (2004) JBIC, J Biol Inorg Chem , vol.9 , Issue.4 , pp. 423-428
    • Park, I.1    Youn, B.2    Harley, J.3    Eidsness, M.4    Smith, E.5    Ichiye, T.6
  • 39
    • 0017349567 scopus 로고
    • Purification and characterization of cytochrome c3, ferredoxin, and rubredoxin isolated from Desulfovibrio desulfuricans Norway
    • 1:CAS:528:DyaE2sXmvVSrtg%3D%3D
    • Bruschi M, Hatchikian CE, Golovleva LA, Gall JL. Purification and characterization of cytochrome c3, ferredoxin, and rubredoxin isolated from Desulfovibrio desulfuricans Norway. J Bacteriol. 1977;129(1):30-8.
    • (1977) J Bacteriol , vol.129 , Issue.1 , pp. 30-38
    • Bruschi, M.1    Hatchikian, C.E.2    Golovleva, L.A.3    Gall, J.L.4
  • 40
    • 0035476428 scopus 로고    scopus 로고
    • A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: Catalytic electron transfer to rubrerythrin and two-iron superoxide reductase
    • 10.1006/abbi.2001.2531 1:CAS:528:DC%2BD3MXmvFSltbg%3D
    • Coulter ED, Kurtz DM Jr. A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Arch Biochem Biophys. 2001;394(1):76-86. doi: 10.1006/abbi.2001.2531.
    • (2001) Arch Biochem Biophys , vol.394 , Issue.1 , pp. 76-86
    • Coulter, E.D.1    Kurtz, D.M.2
  • 43
    • 84928776576 scopus 로고    scopus 로고
    • Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis
    • Deutzmann JS, Sahin M, Spormann AM. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio. 2015;6(2). doi: 10.1128/mBio.00496-15.
    • (2015) MBio. , vol.6 , Issue.2
    • Deutzmann, J.S.1    Sahin, M.2    Spormann, A.M.3
  • 44
    • 77957359097 scopus 로고    scopus 로고
    • Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?
    • 10.1016/j.biortech.2010.07.008 1:CAS:528:DC%2BC3cXht1CgsLnF
    • Rosenbaum M, Aulenta F, Villano M, Angenent LT. Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Biores Technol. 2011;102(1):324-33. doi: 10.1016/j.biortech.2010.07.008.
    • (2011) Biores Technol , vol.102 , Issue.1 , pp. 324-333
    • Rosenbaum, M.1    Aulenta, F.2    Villano, M.3    Angenent, L.T.4
  • 45
    • 84925223274 scopus 로고    scopus 로고
    • 2 sequestration/reduction in a bioelectrochemical system (BES)
    • 10.1016/j.biortech.2014.01.129 1:CAS:528:DC%2BC2cXjtVGhurY%3D
    • Srikanth S, Maesen M, Dominguez-Benetton X, Vanbroekhoven K, Pant D. Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES). Biores Technol. 2014;165:350-4. doi: 10.1016/j.biortech.2014.01.129.
    • (2014) Biores Technol , vol.165 , pp. 350-354
    • Srikanth, S.1    Maesen, M.2    Dominguez-Benetton, X.3    Vanbroekhoven, K.4    Pant, D.5
  • 46
    • 84862703013 scopus 로고    scopus 로고
    • Electron transfer between periplasmic formate dehydrogenase and cytochromes c in Desulfovibrio desulfuricans ATCC 27774
    • 10.1007/s00775-012-0900-5
    • da Silva SM, Pacheco I, Pereira IA. Electron transfer between periplasmic formate dehydrogenase and cytochromes c in Desulfovibrio desulfuricans ATCC 27774. J Biol Inorg Chem. 2012;17(5):831-8. doi: 10.1007/s00775-012-0900-5.
    • (2012) J Biol Inorg Chem , vol.17 , Issue.5 , pp. 831-838
    • Da Silva, S.M.1    Pacheco, I.2    Pereira, I.A.3
  • 47
    • 37349062455 scopus 로고    scopus 로고
    • Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes
    • 10.1016/j.electacta.2007.10.018 1:CAS:528:DC%2BD1cXhtV2msw%3D%3D
    • Dumas C, Basseguy R, Bergel A. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochim Acta. 2008;53(5):2494-500. doi: 10.1016/j.electacta.2007.10.018.
    • (2008) Electrochim Acta , vol.53 , Issue.5 , pp. 2494-2500
    • Dumas, C.1    Basseguy, R.2    Bergel, A.3
  • 48
    • 2642520659 scopus 로고    scopus 로고
    • Graphite electrodes as electron donors for anaerobic respiration
    • 10.1111/j.1462-2920.2004.00593.x 1:CAS:528:DC%2BD2cXlsVSmsbY%3D
    • Gregory KB, Bond DR, Lovley DR. Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol. 2004;6(6):596-604. doi: 10.1111/j.1462-2920.2004.00593.x.
    • (2004) Environ Microbiol , vol.6 , Issue.6 , pp. 596-604
    • Gregory, K.B.1    Bond, D.R.2    Lovley, D.R.3
  • 49
    • 77957364443 scopus 로고    scopus 로고
    • Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode
    • 10.1016/j.biortech.2010.06.155 1:CAS:528:DC%2BC3cXht1CgsLbM
    • Virdis B, Read ST, Rabaey K, Rozendal RA, Yuan Z, Keller J. Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. Biores Technol. 2011;102(1):334-41. doi: 10.1016/j.biortech.2010.06.155.
    • (2011) Biores Technol , vol.102 , Issue.1 , pp. 334-341
    • Virdis, B.1    Read, S.T.2    Rabaey, K.3    Rozendal, R.A.4    Yuan, Z.5    Keller, J.6
  • 50
    • 83455221318 scopus 로고    scopus 로고
    • Biocathodic nitrous oxide removal in bioelectrochemical systems
    • 10.1021/es202047x 1:CAS:528:DC%2BC3MXhsVequrjE
    • Desloover J, Puig S, Virdis B, Clauwaert P, Boeckx P, Verstraete W, et al. Biocathodic nitrous oxide removal in bioelectrochemical systems. Environ Sci Technol. 2011;45(24):10557-66. doi: 10.1021/es202047x.
    • (2011) Environ Sci Technol , vol.45 , Issue.24 , pp. 10557-10566
    • Desloover, J.1    Puig, S.2    Virdis, B.3    Clauwaert, P.4    Boeckx, P.5    Verstraete, W.6
  • 51
    • 84912056751 scopus 로고    scopus 로고
    • Cathode potential and anode electron donor evaluation for a suitable treatment of nitrate-contaminated groundwater in bioelectrochemical systems. Chem
    • 10.1016/j.cej.2014.11.002 1:CAS:528:DC%2BC2cXhvFegt73M
    • Pous N, Puig S, Dolors Balaguer M, Colprim J. Cathode potential and anode electron donor evaluation for a suitable treatment of nitrate-contaminated groundwater in bioelectrochemical systems. Chem. Eng J. 2015;263:151-9. doi: 10.1016/j.cej.2014.11.002.
    • (2015) Eng J , vol.263 , pp. 151-159
    • Pous, N.1    Puig, S.2    Dolors Balaguer, M.3    Colprim, J.4
  • 52
    • 74649087256 scopus 로고    scopus 로고
    • 4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture
    • 10.1016/j.biortech.2009.12.077 1:CAS:528:DC%2BC3cXhtVant7g%3D
    • Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Biores Technol. 2010;101(9):3085-90. doi: 10.1016/j.biortech.2009.12.077.
    • (2010) Biores Technol , vol.101 , Issue.9 , pp. 3085-3090
    • Villano, M.1    Aulenta, F.2    Ciucci, C.3    Ferri, T.4    Giuliano, A.5    Majone, M.6
  • 53
    • 66249100237 scopus 로고    scopus 로고
    • Direct biological conversion of electrical current into methane by electromethanogenesis
    • 10.1021/es803531g 1:CAS:528:DC%2BD1MXjvFaltrw%3D
    • Cheng S, Xing D, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol. 2009;43(10):3953-8. doi: 10.1021/es803531g.
    • (2009) Environ Sci Technol , vol.43 , Issue.10 , pp. 3953-3958
    • Cheng, S.1    Xing, D.2    Call, D.F.3    Logan, B.E.4
  • 54
    • 84905011427 scopus 로고    scopus 로고
    • Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis
    • 10.1038/ismej.2014.82 1:CAS:528:DC%2BC2cXht1Wls7zO
    • Lohner ST, Deutzmann JS, Logan BE, Leigh J, Spormann AM. Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J. 2014;8(8):1673-81. doi: 10.1038/ismej.2014.82.
    • (2014) ISME J , vol.8 , Issue.8 , pp. 1673-1681
    • Lohner, S.T.1    Deutzmann, J.S.2    Logan, B.E.3    Leigh, J.4    Spormann, A.M.5
  • 55
    • 84898766784 scopus 로고    scopus 로고
    • 2 by a thermophilic methanogen
    • 10.1016/j.egypro.2013.06.637 1:CAS:528:DC%2BC3sXhs1ynsbnO
    • Hara M, Onaka Y, Kobayashi H, Fu Q, Kawaguchi H, Vilcaez J, et al. Mechanism of electromethanogenic reduction of CO2 by a thermophilic methanogen. Energy Procedia. 2013;37:7021-8. doi: 10.1016/j.egypro.2013.06.637.
    • (2013) Energy Procedia , vol.37 , pp. 7021-7028
    • Hara, M.1    Onaka, Y.2    Kobayashi, H.3    Fu, Q.4    Kawaguchi, H.5    Vilcaez, J.6
  • 56
    • 77954636353 scopus 로고    scopus 로고
    • Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase
    • 10.1073/pnas.1003653107 1:CAS:528:DC%2BC3cXotVGmtbw%3D
    • Costa KC, Wong PM, Wang T, Lie TJ, Dodsworth JA, Swanson I, et al. Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase. Proc Natl Acad Sci. 2010;107(24):11050-5. doi: 10.1073/pnas.1003653107.
    • (2010) Proc Natl Acad Sci , vol.107 , Issue.24 , pp. 11050-11055
    • Costa, K.C.1    Wong, P.M.2    Wang, T.3    Lie, T.J.4    Dodsworth, J.A.5    Swanson, I.6
  • 57
    • 79960610114 scopus 로고    scopus 로고
    • Electron transport in acetate-grown Methanosarcina acetivorans
    • 10.1186/1471-2180-11-165 1:CAS:528:DC%2BC3MXhtVKgtL%2FF
    • Wang M, Tomb J-F, Ferry J. Electron transport in acetate-grown Methanosarcina acetivorans. BMC Microbiol. 2011;11(1):165. doi: 10.1186/1471-2180-11-165.
    • (2011) BMC Microbiol , vol.11 , Issue.1 , pp. 165
    • Wang, M.1    Tomb, J.-F.2    Ferry, J.3
  • 58
    • 84870499112 scopus 로고    scopus 로고
    • Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex
    • 10.1111/febs.12031 1:CAS:528:DC%2BC38XhslKrtLfL
    • Schlegel K, Welte C, Deppenmeier U, Müller V. Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex. FEBS J. 2012;279(24):4444-52. doi: 10.1111/febs.12031.
    • (2012) FEBS J , vol.279 , Issue.24 , pp. 4444-4452
    • Schlegel, K.1    Welte, C.2    Deppenmeier, U.3    Müller, V.4
  • 59
    • 77953624603 scopus 로고    scopus 로고
    • 2 Storage
    • 10.1146/annurev.biochem.030508.152103 1:CAS:528:DC%2BC3cXpslShtrc%3D
    • Thauer RK, Kaster A-K, Goenrich M, Schick M, Hiromoto T, Shima S. Hydrogenases from methanogenic Archaea, nickel, a novel cofactor, and H2 Storage. Annu Rev Biochem. 2010;79(1):507-36. doi: 10.1146/annurev.biochem.030508.152103.
    • (2010) Annu Rev Biochem , vol.79 , Issue.1 , pp. 507-536
    • Thauer, R.K.1    Kaster, A.-K.2    Goenrich, M.3    Schick, M.4    Hiromoto, T.5    Shima, S.6
  • 60
    • 79955675417 scopus 로고    scopus 로고
    • Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
    • 10.1128/aem.02642-10 1:CAS:528:DC%2BC3MXhtVeju7bF
    • Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol. 2011;77(9):2882-6. doi: 10.1128/aem.02642-10.
    • (2011) Appl Environ Microbiol , vol.77 , Issue.9 , pp. 2882-2886
    • Nevin, K.P.1    Hensley, S.A.2    Franks, A.E.3    Summers, Z.M.4    Ou, J.5    Woodard, T.L.6
  • 61
    • 84917694522 scopus 로고    scopus 로고
    • Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor
    • 10.1128/aem.02767-14
    • Kato S, Yumoto I, Kamagata Y. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl Environ Microbiol. 2015;81(1):67-73. doi: 10.1128/aem.02767-14.
    • (2015) Appl Environ Microbiol , vol.81 , Issue.1 , pp. 67-73
    • Kato, S.1    Yumoto, I.2    Kamagata, Y.3
  • 62
    • 79956121333 scopus 로고    scopus 로고
    • 2 conversion catalysts
    • 10.1002/cssc.201100107 1:CAS:528:DC%2BC3MXmtFyns78%3D
    • Song J, Kim Y, Lim M, Lee H, Lee JI, Shin W. Microbes as electrochemical CO2 conversion catalysts. ChemSusChem. 2011;4(5):587-90. doi: 10.1002/cssc.201100107.
    • (2011) ChemSusChem , vol.4 , Issue.5 , pp. 587-590
    • Song, J.1    Kim, Y.2    Lim, M.3    Lee, H.4    Lee, J.I.5    Shin, W.6
  • 63
    • 84955412403 scopus 로고    scopus 로고
    • Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production
    • 10.1016/j.ijhydene.2014.05.038 1:CAS:528:DC%2BC2cXps1Wqsb8%3D
    • Xafenias N, Mapelli V. Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production. Int J Hydrogen Energ. 2014;39(36):21864-75. doi: 10.1016/j.ijhydene.2014.05.038.
    • (2014) Int J Hydrogen Energ , vol.39 , Issue.36 , pp. 21864-21875
    • Xafenias, N.1    Mapelli, V.2
  • 64
    • 10744223111 scopus 로고    scopus 로고
    • Energy conservation in acetogenic bacteria
    • 10.1128/aem.69.11.6345-6353.2003
    • Müller V. Energy conservation in acetogenic bacteria. Appl Environ Microbiol. 2003;69(11):6345-53. doi: 10.1128/aem.69.11.6345-6353.2003.
    • (2003) Appl Environ Microbiol , vol.69 , Issue.11 , pp. 6345-6353
    • Müller, V.1
  • 66
    • 84969234067 scopus 로고    scopus 로고
    • Toward electrosynthesis with uncoupled extracellular electron uptake and metabolic growth: Enhancing current uptake with Rhodopseudomonas palustris
    • 10.1021/ez500244n 1:CAS:528:DC%2BC2cXhtlagu7vE
    • Doud DFR, Angenent LT. Toward electrosynthesis with uncoupled extracellular electron uptake and metabolic growth: enhancing current uptake with Rhodopseudomonas palustris. Environ Sci Technol Lett. 2014;1(9):351-5. doi: 10.1021/ez500244n.
    • (2014) Environ Sci Technol Lett , vol.1 , Issue.9 , pp. 351-355
    • Doud, D.F.R.1    Angenent, L.T.2
  • 67
    • 84874589923 scopus 로고    scopus 로고
    • Cultivation of an obligate fe(II)-oxidizing lithoautotrophic bacterium using electrodes
    • Summers ZM, Gralnick JA, Bond DR. Cultivation of an obligate fe(ii)-oxidizing lithoautotrophic bacterium using electrodes. mBio. 2013;4(1). doi: 10.1128/mBio.00420-12.
    • (2013) MBio. , vol.4 , Issue.1
    • Summers, Z.M.1    Gralnick, J.A.2    Bond, D.R.3
  • 68
    • 1542378939 scopus 로고    scopus 로고
    • Iron corrosion by novel anaerobic microorganisms
    • 10.1038/nature02321 1:CAS:528:DC%2BD2cXhsFCis7g%3D
    • Dinh HT, Kuever J, Muszmann M, Hassel AW, Stratmann M, Widdel F. Iron corrosion by novel anaerobic microorganisms. Nature. 2004;427(6977):829-32. doi: 10.1038/nature02321.
    • (2004) Nature , vol.427 , Issue.6977 , pp. 829-832
    • Dinh, H.T.1    Kuever, J.2    Muszmann, M.3    Hassel, A.W.4    Stratmann, M.5    Widdel, F.6
  • 69
    • 84868626806 scopus 로고    scopus 로고
    • Filamentous bacteria transport electrons over centimetre distances
    • 10.1038/nature11586 1:CAS:528:DC%2BC38XhsFOmt7fN
    • Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, et al. Filamentous bacteria transport electrons over centimetre distances. Nature. 2012;491(7423):218-21. doi: 10.1038/nature11586.
    • (2012) Nature , vol.491 , Issue.7423 , pp. 218-221
    • Pfeffer, C.1    Larsen, S.2    Song, J.3    Dong, M.4    Besenbacher, F.5    Meyer, R.L.6
  • 70
    • 84879761216 scopus 로고    scopus 로고
    • Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone
    • 10.1039/C3CC42570C 1:CAS:528:DC%2BC3sXhtVWmur3P
    • Sharma M, Aryal N, Sarma PM, Vanbroekhoven K, Lal B, Benetton XD, et al. Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone. Chem Commun. 2013;49(58):6495-7. doi: 10.1039/C3CC42570C.
    • (2013) Chem Commun , vol.49 , Issue.58 , pp. 6495-6497
    • Sharma, M.1    Aryal, N.2    Sarma, P.M.3    Vanbroekhoven, K.4    Lal, B.5    Benetton, X.D.6
  • 71
    • 84961291573 scopus 로고    scopus 로고
    • Electrochemical characterization of direct electron uptake in electrical microbially influenced corrosion of iron by the lithoautotrophic SRB Desulfopila corrodens strain IS4
    • 10.1016/j.electacta.2015.03.184 1:CAS:528:DC%2BC2MXlsVOmtbc%3D
    • Beese-Vasbender PF, Nayak S, Erbe A, Stratmann M, Mayrhofer KJJ. Electrochemical characterization of direct electron uptake in electrical microbially influenced corrosion of iron by the lithoautotrophic SRB Desulfopila corrodens strain IS4. Electrochim Acta. 2015;167:321-9. doi: 10.1016/j.electacta.2015.03.184.
    • (2015) Electrochim Acta , vol.167 , pp. 321-329
    • Beese-Vasbender, P.F.1    Nayak, S.2    Erbe, A.3    Stratmann, M.4    Mayrhofer, K.J.J.5
  • 72
    • 84927517075 scopus 로고    scopus 로고
    • Microbial electroreduction: Screening for new cathodic biocatalysts
    • 10.1002/celc.201402239
    • Rodrigues TdC, Rosenbaum MA. Microbial electroreduction: screening for new cathodic biocatalysts. ChemElectroChem. 2014;1(11):1916-22. doi: 10.1002/celc.201402239.
    • (2014) ChemElectroChem , vol.1 , Issue.11 , pp. 1916-1922
    • Rodrigues, Td.C.1    Rosenbaum, M.A.2
  • 73
    • 84881404831 scopus 로고    scopus 로고
    • Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
    • 10.1039/C3CP52697F 1:CAS:528:DC%2BC3sXht1WisrrP
    • Nie H, Zhang T, Cui M, Lu H, Lovley DR, Russell TP. Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys Chem Chem Phys. 2013;15(34):14290-4. doi: 10.1039/C3CP52697F.
    • (2013) Phys Chem Chem Phys , vol.15 , Issue.34 , pp. 14290-14294
    • Nie, H.1    Zhang, T.2    Cui, M.3    Lu, H.4    Lovley, D.R.5    Russell, T.P.6
  • 74
    • 84904753488 scopus 로고    scopus 로고
    • A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
    • 10.1039/C4TA03101F 1:CAS:528:DC%2BC2cXhtVKmtbrP
    • Jourdin L, Freguia S, Donose BC, Chen J, Wallace GG, Keller J, et al. A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J Mater Chem A. 2014;2(32):13093-102. doi: 10.1039/C4TA03101F.
    • (2014) J Mater Chem A , vol.2 , Issue.32 , pp. 13093-13102
    • Jourdin, L.1    Freguia, S.2    Donose, B.C.3    Chen, J.4    Wallace, G.G.5    Keller, J.6
  • 75
    • 84875677796 scopus 로고    scopus 로고
    • The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems
    • 10.1039/C3EE00052D 1:CAS:528:DC%2BC3sXks1Omsr0%3D
    • Flexer V, Chen J, Donose BC, Sherrell P, Wallace GG, Keller J. The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems. Energ Environ Sci. 2013;6(4):1291-8. doi: 10.1039/C3EE00052D.
    • (2013) Energ Environ Sci , vol.6 , Issue.4 , pp. 1291-1298
    • Flexer, V.1    Chen, J.2    Donose, B.C.3    Sherrell, P.4    Wallace, G.G.5    Keller, J.6
  • 76
    • 84929162125 scopus 로고    scopus 로고
    • Membrane-intercalating conjugated oligoelectrolytes: Impact on bioelectrochemical systems
    • n/a-n/a
    • Yan H, Catania C, Bazan GC. Membrane-intercalating conjugated oligoelectrolytes: Impact on bioelectrochemical systems. Adv Mater. 2015:n/a-n/a. doi: 10.1002/adma.201500487.
    • (2015) Adv Mater.
    • Yan, H.1    Catania, C.2    Bazan, G.C.3
  • 77
    • 84947251258 scopus 로고    scopus 로고
    • High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide
    • 10.1021/acs.est.5b03821
    • Jourdin L, Grieger T, Monetti J, Flexer V, Freguia S, Lu Y, et al. High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. Environ Sci Technol. 2015. doi: 10.1021/acs.est.5b03821.
    • (2015) Environ Sci Technol
    • Jourdin, L.1    Grieger, T.2    Monetti, J.3    Flexer, V.4    Freguia, S.5    Lu, Y.6
  • 78
    • 84927615815 scopus 로고    scopus 로고
    • A graphene modified biocathode for enhancing hydrogen production
    • 10.1039/C5RA02695D 1:CAS:528:DC%2BC2MXlsFCjsrg%3D
    • Su M, Wei L, Qiu Z, Jia Q, Shen J. A graphene modified biocathode for enhancing hydrogen production. RSC Advances. 2015;5(41):32609-14. doi: 10.1039/C5RA02695D.
    • (2015) RSC Advances , vol.5 , Issue.41 , pp. 32609-32614
    • Su, M.1    Wei, L.2    Qiu, Z.3    Jia, Q.4    Shen, J.5
  • 79
    • 77951806527 scopus 로고    scopus 로고
    • Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells
    • 10.1021/es100125h 1:CAS:528:DC%2BC3cXktVWlu7g%3D
    • Foley JM, Rozendal RA, Hertle CK, Lant PA, Rabaey K. Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol. 2010;44(9):3629-37. doi: 10.1021/es100125h.
    • (2010) Environ Sci Technol , vol.44 , Issue.9 , pp. 3629-3637
    • Foley, J.M.1    Rozendal, R.A.2    Hertle, C.K.3    Lant, P.A.4    Rabaey, K.5
  • 80
    • 78650817486 scopus 로고    scopus 로고
    • An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects
    • 10.1016/j.rser.2010.10.005 1:CAS:528:DC%2BC3MXhtVWnug%3D%3D
    • Pant D, Singh A, Van Bogaert G, Gallego YA, Diels L, Vanbroekhoven K. An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects. Renew Sust Energ Rev. 2011;15(2):1305-13. doi: 10.1016/j.rser.2010.10.005.
    • (2011) Renew Sust Energ Rev , vol.15 , Issue.2 , pp. 1305-1313
    • Pant, D.1    Singh, A.2    Van Bogaert, G.3    Gallego, Y.A.4    Diels, L.5    Vanbroekhoven, K.6
  • 81
    • 75349113313 scopus 로고    scopus 로고
    • Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures
    • 10.1021/es902371e 1:CAS:528:DC%2BD1MXhsFShsrzF
    • Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol. 2010;44(1):513-7. doi: 10.1021/es902371e.
    • (2010) Environ Sci Technol , vol.44 , Issue.1 , pp. 513-517
    • Steinbusch, K.J.J.1    Hamelers, H.V.M.2    Schaap, J.D.3    Kampman, C.4    Buisman, C.J.N.5
  • 82
    • 0032904869 scopus 로고    scopus 로고
    • Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation
    • 1:CAS:528:DyaK1MXisFyrs7c%3D
    • Park DH, Zeikus JG. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol. 1999;181(8):2403-10.
    • (1999) J Bacteriol , vol.181 , Issue.8 , pp. 2403-2410
    • Park, D.H.1    Zeikus, J.G.2
  • 83
    • 0033014983 scopus 로고    scopus 로고
    • Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production
    • 1:CAS:528:DyaK1MXktlemt70%3D
    • Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol. 1999;65(7):2912-7.
    • (1999) Appl Environ Microbiol , vol.65 , Issue.7 , pp. 2912-2917
    • Park, D.H.1    Laivenieks, M.2    Guettler, M.V.3    Jain, M.K.4    Zeikus, J.G.5
  • 84
    • 0024997534 scopus 로고
    • Enhanced propionate formation by Propionibacterium freudenreichii subsp. Freudenreichii in a three-electrode amperometric culture system
    • 1:CAS:528:DyaK3cXlvV2kt7w%3D
    • Emde R, Schink B. Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl Environ Microbiol. 1990;56(9):2771-6.
    • (1990) Appl Environ Microbiol , vol.56 , Issue.9 , pp. 2771-2776
    • Emde, R.1    Schink, B.2
  • 85
    • 84923930357 scopus 로고    scopus 로고
    • Identifying target processes for microbial electrosynthesis by elementary mode analysis
    • 10.1186/s12859-014-0410-2
    • Kracke F, Krömer JO. Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinform. 2014;15(1):410. doi: 10.1186/s12859-014-0410-2.
    • (2014) BMC Bioinform , vol.15 , Issue.1 , pp. 410
    • Kracke, F.1    Krömer, J.O.2
  • 86
    • 82355163525 scopus 로고    scopus 로고
    • Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode
    • 10.1021/es202356w 1:CAS:528:DC%2BC3MXhtlyhurrE
    • Wang A-J, Cheng H-Y, Liang B, Ren N-Q, Cui D, Lin N, et al. Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environ Sci Technol. 2011;45(23):10186-93. doi: 10.1021/es202356w.
    • (2011) Environ Sci Technol , vol.45 , Issue.23 , pp. 10186-10193
    • Wang, A.-J.1    Cheng, H.-Y.2    Liang, B.3    Ren, N.-Q.4    Cui, D.5    Lin, N.6
  • 87
    • 84879816867 scopus 로고    scopus 로고
    • Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system
    • 10.1128/aem.00569-13 1:CAS:528:DC%2BC3sXpvV2nsrk%3D
    • Dennis PG, Harnisch F, Yeoh YK, Tyson GW, Rabaey K. Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system. Appl Environ Microbiol. 2013;79(13):4008-14. doi: 10.1128/aem.00569-13.
    • (2013) Appl Environ Microbiol , vol.79 , Issue.13 , pp. 4008-4014
    • Dennis, P.G.1    Harnisch, F.2    Yeoh, Y.K.3    Tyson, G.W.4    Rabaey, K.5
  • 88
    • 85027920053 scopus 로고    scopus 로고
    • Direct electrochemical addressing of immobilized alcohol dehydrogenase for the heterogeneous bioelectrocatalytic reduction of butyraldehyde to butanol
    • 10.1002/cctc.201402932 1:CAS:528:DC%2BC2MXktlGltb0%3D
    • Schlager S, Neugebauer H, Haberbauer M, Hinterberger G, Sariciftci NS. Direct electrochemical addressing of immobilized alcohol dehydrogenase for the heterogeneous bioelectrocatalytic reduction of butyraldehyde to butanol. ChemCatChem. 2015;7(6):967-71. doi: 10.1002/cctc.201402932.
    • (2015) ChemCatChem , vol.7 , Issue.6 , pp. 967-971
    • Schlager, S.1    Neugebauer, H.2    Haberbauer, M.3    Hinterberger, G.4    Sariciftci, N.S.5
  • 89
    • 80051941601 scopus 로고    scopus 로고
    • Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals
    • 10.1038/nature10333 1:CAS:528:DC%2BC3MXhtVOkurbN
    • Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature. 2011;476(7360):355-9. doi: 10.1038/nature10333.
    • (2011) Nature , vol.476 , Issue.7360 , pp. 355-359
    • Dellomonaco, C.1    Clomburg, J.M.2    Miller, E.N.3    Gonzalez, R.4
  • 91
    • 84655162133 scopus 로고    scopus 로고
    • Acetate and propionate impact on the methanogenesis of landfill leachate and the reduction of clogging components
    • 10.1016/j.biortech.2011.09.123 1:CAS:528:DC%2BC3MXhs1OlsLjO
    • Lozecznik S, Sparling R, Clark SP, VanGulck JF, Oleszkiewicz JA. Acetate and propionate impact on the methanogenesis of landfill leachate and the reduction of clogging components. Biores Technol. 2012;104:37-43. doi: 10.1016/j.biortech.2011.09.123.
    • (2012) Biores Technol , vol.104 , pp. 37-43
    • Lozecznik, S.1    Sparling, R.2    Clark, S.P.3    VanGulck, J.F.4    Oleszkiewicz, J.A.5
  • 92
    • 84879761216 scopus 로고    scopus 로고
    • Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone
    • 10.1039/C3CC42570C 1:CAS:528:DC%2BC3sXhtVWmur3P
    • Sharma M, Aryal N, Sarma PM, Vanbroekhoven K, Lal B, Benetton XD, et al. Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone. Chem Commun. 2013;49(58):6495-7. doi: 10.1039/C3CC42570C.
    • (2013) Chem Commun , vol.49 , Issue.58 , pp. 6495-6497
    • Sharma, M.1    Aryal, N.2    Sarma, P.M.3    Vanbroekhoven, K.4    Lal, B.5    Benetton, X.D.6
  • 93
    • 84885152223 scopus 로고    scopus 로고
    • Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol
    • 10.1021/es402132r 1:CAS:528:DC%2BC3sXht1OjurbP
    • Zhou M, Chen J, Freguia S, Rabaey K, Keller J. Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol. Environ Sci Technol. 2013;47(19):11199-205. doi: 10.1021/es402132r.
    • (2013) Environ Sci Technol , vol.47 , Issue.19 , pp. 11199-11205
    • Zhou, M.1    Chen, J.2    Freguia, S.3    Rabaey, K.4    Keller, J.5
  • 94
    • 84868310570 scopus 로고    scopus 로고
    • Microaerophilic microenvironment at biocathode enhances electrogenesis with simultaneous synthesis of polyhydroxyalkanoates (PHA) in bioelectrochemical system (BES)
    • Srikanth S, Venkateswar Reddy M, Venkata Mohan S. Microaerophilic microenvironment at biocathode enhances electrogenesis with simultaneous synthesis of polyhydroxyalkanoates (PHA) in bioelectrochemical system (BES). Biores Technol. 2012;125:291-9. doi: 10.1016/j.biortech.2012.08.060.
    • (2012) Biores Technol. , vol.125 , pp. 291-299
    • Srikanth, S.1    Venkateswar Reddy, M.2    Venkata Mohan, S.3
  • 95
    • 80052470228 scopus 로고    scopus 로고
    • Extremely thermophilic routes to microbial electrofuels
    • 10.1021/cs2003017 1:CAS:528:DC%2BC3MXpvFSms7k%3D
    • Hawkins AS, Han Y, Lian H, Loder AJ, Menon AL, Iwuchukwu IJ, et al. Extremely thermophilic routes to microbial electrofuels. ACS Catal. 2011;1(9):1043-50. doi: 10.1021/cs2003017.
    • (2011) ACS Catal , vol.1 , Issue.9 , pp. 1043-1050
    • Hawkins, A.S.1    Han, Y.2    Lian, H.3    Loder, A.J.4    Menon, A.L.5    Iwuchukwu, I.J.6
  • 97
    • 84878655703 scopus 로고    scopus 로고
    • Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals
    • 10.1016/j.copbio.2013.02.017 1:CAS:528:DC%2BC3sXkt1Krt74%3D
    • Hawkins AS, McTernan PM, Lian H, Kelly RM, Adams MWW. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals. Curr Opin Biotech. 2013;24(3):376-84. doi: 10.1016/j.copbio.2013.02.017.
    • (2013) Curr Opin Biotech , vol.24 , Issue.3 , pp. 376-384
    • Hawkins, A.S.1    McTernan, P.M.2    Lian, H.3    Kelly, R.M.4    Adams, M.W.W.5
  • 98
    • 84927559065 scopus 로고    scopus 로고
    • Electrifying microbes for the production of chemicals
    • 10.3389/fmicb.2015.00201
    • Tremblay P-L, Zhang T. Electrifying microbes for the production of chemicals. Front Microbiol. 2015. doi: 10.3389/fmicb.2015.00201.
    • (2015) Front Microbiol.
    • Tremblay, P.-L.1    Zhang, T.2
  • 99
    • 84878648156 scopus 로고    scopus 로고
    • Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
    • 10.1021/es400341b 1:CAS:528:DC%2BC3sXmsFelsr0%3D
    • Marshall CW, Ross DE, Fichot EB, Norman RS, May HD. Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ Sci Technol. 2013;47(11):6023-9. doi: 10.1021/es400341b.
    • (2013) Environ Sci Technol , vol.47 , Issue.11 , pp. 6023-6029
    • Marshall, C.W.1    Ross, D.E.2    Fichot, E.B.3    Norman, R.S.4    May, H.D.5
  • 100
    • 84930010858 scopus 로고    scopus 로고
    • Microbial electrosynthesis of butyrate from carbon dioxide
    • 10.1039/C4CC10121A 1:CAS:528:DC%2BC2MXntVSmtA%3D%3D
    • Ganigue R, Puig S, Batlle-Vilanova P, Balaguer MD, Colprim J. Microbial electrosynthesis of butyrate from carbon dioxide. Chem Commun. 2015;51(15):3235-8. doi: 10.1039/C4CC10121A.
    • (2015) Chem Commun , vol.51 , Issue.15 , pp. 3235-3238
    • Ganigue, R.1    Puig, S.2    Batlle-Vilanova, P.3    Balaguer, M.D.4    Colprim, J.5
  • 101
    • 84923676034 scopus 로고    scopus 로고
    • Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system
    • 10.1073/pnas.1424872112 1:CAS:528:DC%2BC2MXitlagsLc%3D
    • Torella JP, Gagliardi CJ, Chen JS, Bediako DK, Colón B, Way JC, et al. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc Natl Acad Sci. 2015;112(8):2337-42. doi: 10.1073/pnas.1424872112.
    • (2015) Proc Natl Acad Sci , vol.112 , Issue.8 , pp. 2337-2342
    • Torella, J.P.1    Gagliardi, C.J.2    Chen, J.S.3    Bediako, D.K.4    Colón, B.5    Way, J.C.6
  • 102
    • 84862551526 scopus 로고    scopus 로고
    • Evaluation of microbial fuel cell Shewanella biocathodes for treatment of chromate contamination
    • 10.1039/C2RA20478A 1:CAS:528:DC%2BC38Xos1SrsL4%3D
    • Hsu L, Masuda SA, Nealson KH, Pirbazari M. Evaluation of microbial fuel cell Shewanella biocathodes for treatment of chromate contamination. RSC Adv. 2012;2(13):5844-55. doi: 10.1039/C2RA20478A.
    • (2012) RSC Adv , vol.2 , Issue.13 , pp. 5844-5855
    • Hsu, L.1    Masuda, S.A.2    Nealson, K.H.3    Pirbazari, M.4
  • 103
    • 40949122427 scopus 로고    scopus 로고
    • Hydrogen production with a microbial biocathode
    • 10.1021/es071720+ 1:CAS:528:DC%2BD1cXjt1aluw%3D%3D
    • Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN. Hydrogen production with a microbial biocathode. Environ Sci Technol. 2008;42(2):629-34. doi: 10.1021/es071720+.
    • (2008) Environ Sci Technol , vol.42 , Issue.2 , pp. 629-634
    • Rozendal, R.A.1    Jeremiasse, A.W.2    Hamelers, H.V.M.3    Buisman, C.J.N.4
  • 104
    • 77649235028 scopus 로고    scopus 로고
    • Microbial electrolysis cell with a microbial biocathode
    • 10.1016/j.bioelechem.2009.05.005 1:CAS:528:DC%2BC3cXjtVWiurw%3D
    • Jeremiasse AW, Hamelers HVM, Buisman CJN. Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry. 2010;78(1):39-43. doi: 10.1016/j.bioelechem.2009.05.005.
    • (2010) Bioelectrochemistry , vol.78 , Issue.1 , pp. 39-43
    • Jeremiasse, A.W.1    Hamelers, H.V.M.2    Buisman, C.J.N.3
  • 106
    • 79955675417 scopus 로고    scopus 로고
    • Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
    • 10.1128/aem.02642-10 1:CAS:528:DC%2BC3MXhtVeju7bF
    • Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microb. 2011;77(9):2882-6. doi: 10.1128/aem.02642-10.
    • (2011) Appl Environ Microb , vol.77 , Issue.9 , pp. 2882-2886
    • Nevin, K.P.1    Hensley, S.A.2    Franks, A.E.3    Summers, Z.M.4    Ou, J.5    Woodard, T.L.6
  • 107
    • 78650173757 scopus 로고    scopus 로고
    • Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
    • Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio. 2010;1(2). doi: 10.1128/mBio.00103-10.
    • (2010) MBio , vol.1 , Issue.2
    • Nevin, K.P.1    Woodard, T.L.2    Franks, A.E.3    Summers, Z.M.4    Lovley, D.R.5
  • 108
    • 84872760339 scopus 로고    scopus 로고
    • Bio-electrochemical conversion of carbon dioxide to methane in geological storage reservoirs
    • 10.1016/j.enconman.2012.12.008 1:CAS:528:DC%2BC3sXjtlKkt7o%3D
    • Sato K, Kawaguchi H, Kobayashi H. Bio-electrochemical conversion of carbon dioxide to methane in geological storage reservoirs. Energy Convers Manag. 2013;66:343-50. doi: 10.1016/j.enconman.2012.12.008.
    • (2013) Energy Convers Manag , vol.66 , pp. 343-350
    • Sato, K.1    Kawaguchi, H.2    Kobayashi, H.3
  • 109
    • 0041344634 scopus 로고    scopus 로고
    • Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: Expression in Escherichia coli confers the ability to reduce soluble Fe(III) chelates
    • 10.1074/jbc.M302582200 1:CAS:528:DC%2BD3sXlsFKktLc%3D
    • Pitts KE, Dobbin PS, Reyes-Ramirez F, Thomson AJ, Richardson DJ, Seward HE. Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: expression in Escherichia coli confers the ability to reduce soluble Fe(III) chelates. J Biol Chem. 2003;278(30):27758-65. doi: 10.1074/jbc.M302582200.
    • (2003) J Biol Chem , vol.278 , Issue.30 , pp. 27758-27765
    • Pitts, K.E.1    Dobbin, P.S.2    Reyes-Ramirez, F.3    Thomson, A.J.4    Richardson, D.J.5    Seward, H.E.6
  • 110
    • 44349112274 scopus 로고    scopus 로고
    • Redox-reactive membrane vesicles produced by Shewanella
    • 10.1111/j.1472-4669.2008.00158.x 1:CAS:528:DC%2BD1cXotlCrsr0%3D
    • Gorby Y, McLean J, Korenevsky A, Rosso K, El-Naggar MY, Beveridge TJ. Redox-reactive membrane vesicles produced by Shewanella. Geobiology. 2008;6(3):232-41. doi: 10.1111/j.1472-4669.2008.00158.x.
    • (2008) Geobiology , vol.6 , Issue.3 , pp. 232-241
    • Gorby, Y.1    McLean, J.2    Korenevsky, A.3    Rosso, K.4    El-Naggar, M.Y.5    Beveridge, T.J.6
  • 111
    • 34548393635 scopus 로고    scopus 로고
    • Characterization of Shewanella oneidensis MtrC: A cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors
    • 10.1007/s00775-007-0278-y 1:CAS:528:DC%2BD2sXpvVagtLg%3D
    • Hartshorne R, Jepson B, Clarke T, Field S, Fredrickson J, Zachara J, et al. Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors. JBIC, J Biol Inorg Chem. 2007;12(7):1083-94. doi: 10.1007/s00775-007-0278-y.
    • (2007) JBIC, J Biol Inorg Chem , vol.12 , Issue.7 , pp. 1083-1094
    • Hartshorne, R.1    Jepson, B.2    Clarke, T.3    Field, S.4    Fredrickson, J.5    Zachara, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.