메뉴 건너뛰기




Volumn 7, Issue 4, 2015, Pages

A novel bioprinting method and system for forming hybrid tissue engineering constructs

Author keywords

bioprinting; hybrid tissue engineering construct; poly ( caprolactone); poly ethylene glycol diacrylate; vascularization

Indexed keywords

BIOMATERIALS; BIOMECHANICS; CELL ENGINEERING; CELLS; CYTOLOGY; ETHYLENE; ETHYLENE GLYCOL; HYDROGELS; MECHANICAL PROPERTIES; MOLTEN MATERIALS; POLYOLS; TISSUE; TISSUE ENGINEERING; TISSUE REGENERATION;

EID: 84954163512     PISSN: 17585082     EISSN: 17585090     Source Type: Journal    
DOI: 10.1088/1758-5090/7/4/045008     Document Type: Article
Times cited : (131)

References (67)
  • 6
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • 773-85
    • Murphy S V and Atala A 2014 3D bioprinting of tissues and organs Nat. Biotechnol. 32 773-85
    • (2014) Nat. Biotechnol. , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 7
    • 33745786636 scopus 로고    scopus 로고
    • Direct freeform fabrication of seeded hydrogels in arbitrary geometries
    • 1325-35
    • Cohen D L, Malone E, Lipson H and Bonassar L J 2006 Direct freeform fabrication of seeded hydrogels in arbitrary geometries Tissue Eng. 12 1325-35
    • (2006) Tissue Eng. , vol.12 , pp. 1325-1335
    • Cohen, D.L.1    Malone, E.2    Lipson, H.3    Bonassar, L.J.4
  • 8
    • 77956761652 scopus 로고    scopus 로고
    • Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering
    • Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering
    • Shor L, Guceri S, Chang R, Gordon J, Kang Q, Hartsock L, An Y and Sun W 2009 Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering Biofabrication 1 015003
    • (2009) Biofabrication , vol.1 , Issue.1
    • Shor, L.1    Guceri, S.2    Chang, R.3    Gordon, J.4    Kang, Q.5    Hartsock, L.6    An, Y.7    Sun, W.8
  • 9
    • 84868210194 scopus 로고    scopus 로고
    • Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture
    • 331-9
    • Lin H, Zhang D, Alexander P G, Yang G, Tan J, Cheng A W and Tuan R S 2013 Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture Biomaterials 34 331-9
    • (2013) Biomaterials , vol.34 , pp. 331-339
    • Lin, H.1    Zhang, D.2    Alexander, P.G.3    Yang, G.4    Tan, J.5    Cheng, A.W.6    Tuan, R.S.7
  • 10
    • 77953651502 scopus 로고    scopus 로고
    • A review on stereolithography and its applications in biomedical engineering
    • 6121-30
    • Melchels F P, Feijen J and Grijpma D W 2010 A review on stereolithography and its applications in biomedical engineering Biomaterials 31 6121-30
    • (2010) Biomaterials , vol.31 , pp. 6121-6130
    • Melchels, F.P.1    Feijen, J.2    Grijpma, D.W.3
  • 11
    • 78649529363 scopus 로고    scopus 로고
    • Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins
    • Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins 34-41
    • Seck T M, Melchels F P W, Feijen J and Grijpma D W 2010 Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins J. Control. Release 148 34-41
    • (2010) J. Control. Release , vol.148 , pp. 34-41
    • Seck, T.M.1    Melchels, F.P.W.2    Feijen, J.3    Grijpma, D.W.4
  • 12
    • 84918826829 scopus 로고    scopus 로고
    • Biodegradable photocrosslinkable poly(depsipeptide-co-ε-caprolactone) for tissue engineering: Synthesis, characterization, and in vitro evaluation
    • Biodegradable photocrosslinkable poly(depsipeptide-co-epsiv;-caprolactone) for tissue engineering: synthesis, characterization, and in vitro evaluation 3307-15
    • Elomaa L, Kang Y, Seppälä J V and Yang Y 2014 Biodegradable photocrosslinkable poly(depsipeptide-co-ε-caprolactone) for tissue engineering: synthesis, characterization, and in vitro evaluation J. Polym. Sci. A 52 3307-15
    • (2014) J. Polym. Sci. , vol.52 , pp. 3307-3315
    • Elomaa, L.1    Kang, Y.2    Seppälä, J.V.3    Yang, Y.4
  • 13
    • 33748922161 scopus 로고    scopus 로고
    • A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds
    • 396-405
    • Lu Y, Mapili G, Suhali G, Chen S and Roy K 2006 A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds J. Biomed. Mater. Res. A 77 396-405
    • (2006) J. Biomed. Mater. Res. , vol.77 , pp. 396-405
    • Lu, Y.1    Mapili, G.2    Suhali, G.3    Chen, S.4    Roy, K.5
  • 14
    • 67349157548 scopus 로고    scopus 로고
    • A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography
    • A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography 3801-9
    • Melchels F P, Feijen J and Grijpma D W 2009 A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography Biomaterials 30 3801-9
    • (2009) Biomaterials , vol.30 , pp. 3801-3809
    • Melchels, F.P.1    Feijen, J.2    Grijpma, D.W.3
  • 15
    • 84868125762 scopus 로고    scopus 로고
    • Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology
    • 130-9
    • Xu T, Zhao W, Zhu J M, Albanna M Z, Yoo J J and Atala A 2013 Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology Biomaterials 34 130-9
    • (2013) Biomaterials , vol.34 , pp. 130-139
    • Xu, T.1    Zhao, W.2    Zhu, J.M.3    Albanna, M.Z.4    Yoo, J.J.5    Atala, A.6
  • 18
    • 84889076007 scopus 로고    scopus 로고
    • Mechanical characterization of bioprinted in vitro soft tissue models
    • Zhang T, Yan K C, Ouyang L and Sun W 2013 Mechanical characterization of bioprinted in vitro soft tissue models Biofabrication 5 045010
    • (2013) Biofabrication , vol.5 , Issue.4
    • Zhang, T.1    Yan, K.C.2    Ouyang, L.3    Sun, W.4
  • 19
    • 84899574160 scopus 로고    scopus 로고
    • A comparative study on collagen type i and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting
    • Park J Y, Choi J C, Shim J H, Lee J S, Park H, Kim S W, Doh J and Cho D W 2014 A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting Biofabrication 6 035004
    • (2014) Biofabrication , vol.6 , Issue.3
    • Park, J.Y.1    Choi, J.C.2    Shim, J.H.3    Lee, J.S.4    Park, H.5    Kim, S.W.6    Doh, J.7    Cho, D.W.8
  • 21
    • 3042597735 scopus 로고    scopus 로고
    • Biological laser printing: A novel technique for creating heterogeneous 3-dimensional cell patterns
    • 139-47
    • Barron J A, Wu P, Ladouceur H D and Ringeisen B R 2004 Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns Biomed. Microdevices 6 139-47
    • (2004) Biomed. Microdevices , vol.6 , pp. 139-147
    • Barron, J.A.1    Wu, P.2    Ladouceur, H.D.3    Ringeisen, B.R.4
  • 22
    • 77955276061 scopus 로고    scopus 로고
    • High-throughput laser printing of cells and biomaterials for tissue engineering
    • 2494-500
    • Guillemot F et al 2010 High-throughput laser printing of cells and biomaterials for tissue engineering Acta Biomater. 6 2494-500
    • (2010) Acta Biomater. , vol.6 , pp. 2494-2500
    • Guillemot, F.1
  • 23
    • 0037082740 scopus 로고    scopus 로고
    • Fused deposition modeling of novel scaffold architectures for tissue engineering applications
    • 1169-85
    • Zein I, Hutmacher D W, Tan K C and Teoh S H 2002 Fused deposition modeling of novel scaffold architectures for tissue engineering applications Biomaterials 23 1169-85
    • (2002) Biomaterials , vol.23 , pp. 1169-1185
    • Zein, I.1    Hutmacher, D.W.2    Tan, K.C.3    Teoh, S.H.4
  • 25
    • 0042827798 scopus 로고    scopus 로고
    • Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling
    • S103-12 (Suppl 1)
    • Cao T, Ho K H and Teoh S H 2003 Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling Tissue Eng. 9 S103-12 (Suppl 1)
    • (2003) Tissue Eng. , vol.9 , pp. S103-S112
    • Cao, T.1    Ho, K.H.2    Teoh, S.H.3
  • 26
    • 84891350950 scopus 로고    scopus 로고
    • 3D printed PLA-based scaffolds: A versatile tool in regenerative medicine
    • 239-44
    • Serra T, Mateos-Timoneda M A, Planell J A and Navarro M 2013 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine Organogenesis 9 239-44
    • (2013) Organogenesis , vol.9 , pp. 239-244
    • Serra, T.1    Mateos-Timoneda, M.A.2    Planell, J.A.3    Navarro, M.4
  • 27
    • 84873166089 scopus 로고    scopus 로고
    • High-resolution PLA-based composite scaffolds via 3D printing technology
    • 5521-30
    • Serra T, Planell J A and Navarro M 2013 High-resolution PLA-based composite scaffolds via 3D printing technology Acta Biomater. 9 5521-30
    • (2013) Acta Biomater. , vol.9 , pp. 5521-5530
    • Serra, T.1    Planell, J.A.2    Navarro, M.3
  • 28
  • 30
    • 33744832163 scopus 로고    scopus 로고
    • Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications
    • 457-66
    • Miranda P, Saiz E, Gryn K and Tomsia A P 2006 Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications Acta Biomater. 2 457-66
    • (2006) Acta Biomater. , vol.2 , pp. 457-466
    • Miranda, P.1    Saiz, E.2    Gryn, K.3    Tomsia, A.P.4
  • 31
    • 84866055893 scopus 로고    scopus 로고
    • Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds
    • Hockaday L A et al 2012 Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds Biofabrication 4 035005
    • (2012) Biofabrication , vol.4 , Issue.3
    • Hockaday, L.A.1
  • 32
    • 84908222844 scopus 로고    scopus 로고
    • Engineering alginate as bioink for bioprinting
    • 4323-31
    • Jia J et al 2014 Engineering alginate as bioink for bioprinting Acta Biomater. 10 4323-31
    • (2014) Acta Biomater. , vol.10 , pp. 4323-4331
    • Jia, J.1
  • 33
    • 84884211629 scopus 로고    scopus 로고
    • 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
    • 1255-64
    • Duan B, Hockaday L A, Kang K H and Butcher J T 2013 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels J. Biomed. Mater. Res A 101 1255-64
    • (2013) J. Biomed. Mater. Res , vol.101 , pp. 1255-1264
    • Duan, B.1    Hockaday, L.A.2    Kang, K.H.3    Butcher, J.T.4
  • 36
    • 0007918155 scopus 로고    scopus 로고
    • Mechanical properties of bone
    • An Y H ed Y H An and R A Draughn (Boca Raton, FL: CRC Press) pp 50-1
    • An Y H 2000 Mechanical properties of bone Mechanical Testing of Bone and the Bone-Implant Interface ed Y H An and R A Draughn (Boca Raton, FL: CRC Press) pp 50-1
    • (2000) Mechanical Testing of Bone and the Bone-Implant Interface , pp. 50-51
    • An, Y.H.1
  • 37
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • 677-89
    • Engler A J, Sen S, Sweeney H L and Discher D E 2006 Matrix elasticity directs stem cell lineage specification Cell 126 677-89
    • (2006) Cell , vol.126 , pp. 677-689
    • Engler, A.J.1    Sen, S.2    Sweeney, H.L.3    Discher, D.E.4
  • 38
    • 84920138313 scopus 로고    scopus 로고
    • Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction
    • 57-62
    • Zopf D A, Mitsak A G, Flanagan C L, Wheeler M, Green G E and Hollister S J 2015 Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction Otolaryngol. Head Neck Surg. 152 57-62
    • (2015) Otolaryngol. Head Neck Surg. , vol.152 , pp. 57-62
    • Zopf, D.A.1    Mitsak, A.G.2    Flanagan, C.L.3    Wheeler, M.4    Green, G.E.5    Hollister, S.J.6
  • 39
    • 79955002033 scopus 로고    scopus 로고
    • Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction
    • 2444-50
    • Fairbanks B D, Singh S P, Bowman C N and Anseth K S 2011 Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction Macromolecules 44 2444-50
    • (2011) Macromolecules , vol.44 , pp. 2444-2450
    • Fairbanks, B.D.1    Singh, S.P.2    Bowman, C.N.3    Anseth, K.S.4
  • 40
    • 84954100357 scopus 로고    scopus 로고
    • Additive manufactured prevascularized tissue engineering constructs (#1155)
    • Additive manufactured prevascularized tissue engineering constructs (#1155) (Las Vegas, NV,)
    • Shanjani Y, Kang Y and Yang Y P 2015 Additive manufactured prevascularized tissue engineering constructs (#1155) Orthopaedic Research Society Annual Meeting (Las Vegas, NV,)
    • (2015) Orthopaedic Research Society Annual Meeting
    • Shanjani, Y.1    Kang, Y.2    Yang, Y.P.3
  • 42
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • 5910-7
    • Norotte C, Marga F S, Niklason L E and Forgacs G 2009 Scaffold-free vascular tissue engineering using bioprinting Biomaterials 30 5910-7
    • (2009) Biomaterials , vol.30 , pp. 5910-5917
    • Norotte, C.1    Marga, F.S.2    Niklason, L.E.3    Forgacs, G.4
  • 43
    • 65649152928 scopus 로고    scopus 로고
    • Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology
    • 249-65
    • Shengjie L, Zhuo X, Xiaohong W, Yongnian Y, Haixia L and Renji Z 2009 Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology J. Bioact. Compat. Polym. 24 249-65
    • (2009) J. Bioact. Compat. Polym. , vol.24 , pp. 249-265
    • Shengjie, L.1    Zhuo, X.2    Xiaohong, W.3    Yongnian, Y.4    Haixia, L.5    Renji, Z.6
  • 44
    • 84946497789 scopus 로고    scopus 로고
    • An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering
    • 1286-97
    • Kundu J, Shim J H, Jang J, Kim S W and Cho D W 2015 An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering J. Tissue Eng. Regen. Med. 9 1286-97
    • (2015) J. Tissue Eng. Regen. Med. , vol.9 , pp. 1286-1297
    • Kundu, J.1    Shim, J.H.2    Jang, J.3    Kim, S.W.4    Cho, D.W.5
  • 46
    • 84864459017 scopus 로고    scopus 로고
    • Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system
    • Shim J-H, Lee J-S, Kim J Y and Cho D-W 2012 Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system J. Micromech. Microeng. 22 085014
    • (2012) J. Micromech. Microeng. , vol.22 , Issue.8
    • Shim, J.-H.1    Lee, J.-S.2    Kim, J.Y.3    Cho, D.-W.4
  • 50
    • 85065220413 scopus 로고    scopus 로고
    • Controlled positioning of cells in biomaterials - Approaches towards 3D tissue printing
    • 119-54
    • Wust S, Muller R and Hofmann S 2011 Controlled positioning of cells in biomaterials - approaches towards 3D tissue printing J. Funct. Biomater. 2 119-54
    • (2011) J. Funct. Biomater. , vol.2 , pp. 119-154
    • Wust, S.1    Muller, R.2    Hofmann, S.3
  • 52
    • 79953144743 scopus 로고    scopus 로고
    • The mechanisms of UV mutagenesis
    • 115-25
    • Ikehata H and Ono T 2011 The mechanisms of UV mutagenesis J. Radiat. Res. 52 115-25
    • (2011) J. Radiat. Res. , vol.52 , pp. 115-125
    • Ikehata, H.1    Ono, T.2
  • 53
    • 84861826955 scopus 로고    scopus 로고
    • Direct human cartilage repair using three-dimensional bioprinting technology
    • 1304-12
    • Cui X, Breitenkamp K, Finn M G, Lotz M and D'Lima D D 2012 Direct human cartilage repair using three-dimensional bioprinting technology Tissue Eng. A 18 1304-12
    • (2012) Tissue Eng. , vol.18 , pp. 1304-1312
    • Cui, X.1    Breitenkamp, K.2    Finn, M.G.3    Lotz, M.4    D'Lima, D.D.5
  • 54
    • 84899520611 scopus 로고    scopus 로고
    • Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels
    • Bertassoni L E et al 2014 Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels Biofabrication 6 024105
    • (2014) Biofabrication , vol.6 , Issue.2
    • Bertassoni, L.E.1
  • 55
    • 84901915693 scopus 로고    scopus 로고
    • Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
    • 2202-11
    • Bertassoni L E et al 2014 Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs Lab Chip 14 2202-11
    • (2014) Lab Chip , vol.14 , pp. 2202-2211
    • Bertassoni, L.E.1
  • 56
    • 77957588918 scopus 로고    scopus 로고
    • The return of a forgotten polymer - Polycaprolactone in the 21st century
    • 1217-56
    • Woodruff M A and Hutmacher D W 2010 The return of a forgotten polymer - polycaprolactone in the 21st century Prog. Polym. Sci. 35 1217-56
    • (2010) Prog. Polym. Sci. , vol.35 , pp. 1217-1256
    • Woodruff, M.A.1    Hutmacher, D.W.2
  • 57
  • 61
    • 77951089569 scopus 로고    scopus 로고
    • Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering
    • Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering 4639-56
    • Zhu J 2010 Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering Biomaterials 31 4639-56
    • (2010) Biomaterials , vol.31 , pp. 4639-4656
    • Zhu, J.1
  • 62
    • 84945278577 scopus 로고    scopus 로고
    • Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography
    • Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography 8348-58
    • Elomaa L, Pan C C, Shanjani Y, Malkovskiy A, Seppälä J V and Yang Y 2015 Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography J. Mater. Chem. B 3 8348-58
    • (2015) J. Mater. Chem. , vol.3 , pp. 8348-8358
    • Elomaa, L.1    Pan, C.C.2    Shanjani, Y.3    Malkovskiy, A.4    Seppälä, J.V.5    Yang, Y.6
  • 63
    • 45549085001 scopus 로고    scopus 로고
    • Osteogenesis and angiogenesis: The potential for engineering bone
    • 100-14
    • Kanczler J M and Oreffo R O 2008 Osteogenesis and angiogenesis: the potential for engineering bone Eur. Cell Mater. 15 100-14
    • (2008) Eur. Cell Mater. , vol.15 , pp. 100-114
    • Kanczler, J.M.1    Oreffo, R.O.2
  • 64
    • 0002767351 scopus 로고    scopus 로고
    • The structure and development of bone
    • Marks S C and Hermey D C ed J P Bilezikian, L G Raisz and G A Rodan (New York: Academic) pp 3-14
    • Marks S C and Hermey D C 1996 The structure and development of bone Principles of Bone Biology ed J P Bilezikian, L G Raisz and G A Rodan (New York: Academic) pp 3-14
    • (1996) Principles of Bone Biology , pp. 3-14
    • Marks, S.C.1    Hermey, D.C.2
  • 66
    • 84862814356 scopus 로고    scopus 로고
    • Intraluminal thrombus has a selective influence on matrix metalloproteinases and their inhibitors (tissue inhibitors of matrix metalloproteinases) in the wall of abdominal aortic aneurysms
    • Intraluminal thrombus has a selective influence on matrix metalloproteinases and their inhibitors (tissue inhibitors of matrix metalloproteinases) in the wall of abdominal aortic aneurysms 322-9
    • Khan J A, Abdul Rahman M N A, Mazari F A K, Shahin Y, Smith G, Madden L, Fagan M J, Greenman J, McCollum P T and Chetter I C 2012 Intraluminal thrombus has a selective influence on matrix metalloproteinases and their inhibitors (tissue inhibitors of matrix metalloproteinases) in the wall of abdominal aortic aneurysms Ann. Vasc. Surg. 26 322-9
    • (2012) Ann. Vasc. Surg. , vol.26 , pp. 322-329
    • Khan, J.A.1    Abdul Rahman, M.N.A.2    Mazari, F.A.K.3    Shahin, Y.4    Smith, G.5    Madden, L.6    Fagan, M.J.7    Greenman, J.8    McCollum, P.T.9    Chetter, I.C.10
  • 67
    • 84925013339 scopus 로고    scopus 로고
    • Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach
    • 449-58
    • Kang Y, Mochizuki N, Khademhosseini A, Fukuda J and Yang Y 2015 Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach Acta Biomater. 11 449-58
    • (2015) Acta Biomater. , vol.11 , pp. 449-458
    • Kang, Y.1    Mochizuki, N.2    Khademhosseini, A.3    Fukuda, J.4    Yang, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.