-
1
-
-
84855396802
-
Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds
-
33-44
-
Fedorovich N E, Schuurman W, Wijnberg H M, Prins H J, van Weeren P R, Malda J, Alblas J and Dhert W J 2012 Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds Tissue Eng. Part C Methods 18 33-44
-
(2012)
Tissue Eng. Part C Methods
, vol.18
, pp. 33-44
-
-
Fedorovich, N.E.1
Schuurman, W.2
Wijnberg, H.M.3
Prins, H.J.4
Van Weeren, P.R.5
Malda, J.6
Alblas, J.7
Dhert, W.J.8
-
2
-
-
60549108145
-
Organ printing: Tissue spheroids as building blocks
-
2164-74
-
Mironov V, Visconti R P, Kasyanov V, Forgacs G, Drake C J and Markwald R R 2009 Organ printing: tissue spheroids as building blocks Biomaterials 30 2164-74
-
(2009)
Biomaterials
, vol.30
, pp. 2164-2174
-
-
Mironov, V.1
Visconti, R.P.2
Kasyanov, V.3
Forgacs, G.4
Drake, C.J.5
Markwald, R.R.6
-
3
-
-
84899560969
-
Three-dimensional printing of Hela cells for cervical tumor model in vitro
-
Zhao Y, Yao R, Ouyang L, Ding H, Zhang T, Zhang K, Cheng S and Sun W 2014 Three-dimensional printing of Hela cells for cervical tumor model in vitro Biofabrication 6 035001
-
(2014)
Biofabrication
, vol.6
, Issue.3
-
-
Zhao, Y.1
Yao, R.2
Ouyang, L.3
Ding, H.4
Zhang, T.5
Zhang, K.6
Cheng, S.7
Sun, W.8
-
4
-
-
84858779329
-
Toward engineering functional organ modules by additive manufacturing
-
Marga F, Jakab K, Khatiwala C, Shepherd B, Dorfman S, Hubbard B, Colbert S and Gabor F 2012 Toward engineering functional organ modules by additive manufacturing Biofabrication 4 022001
-
(2012)
Biofabrication
, vol.4
, Issue.2
-
-
Marga, F.1
Jakab, K.2
Khatiwala, C.3
Shepherd, B.4
Dorfman, S.5
Hubbard, B.6
Colbert, S.7
Gabor, F.8
-
5
-
-
79952011307
-
Tissue engineering by self-assembly and bio-printing of living cells
-
Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G and Forgacs G 2010 Tissue engineering by self-assembly and bio-printing of living cells Biofabrication 2 022001
-
(2010)
Biofabrication
, vol.2
, Issue.2
-
-
Jakab, K.1
Norotte, C.2
Marga, F.3
Murphy, K.4
Vunjak-Novakovic, G.5
Forgacs, G.6
-
6
-
-
84905725612
-
3D bioprinting of tissues and organs
-
773-85
-
Murphy S V and Atala A 2014 3D bioprinting of tissues and organs Nat. Biotechnol. 32 773-85
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 773-785
-
-
Murphy, S.V.1
Atala, A.2
-
7
-
-
33745786636
-
Direct freeform fabrication of seeded hydrogels in arbitrary geometries
-
1325-35
-
Cohen D L, Malone E, Lipson H and Bonassar L J 2006 Direct freeform fabrication of seeded hydrogels in arbitrary geometries Tissue Eng. 12 1325-35
-
(2006)
Tissue Eng.
, vol.12
, pp. 1325-1335
-
-
Cohen, D.L.1
Malone, E.2
Lipson, H.3
Bonassar, L.J.4
-
8
-
-
77956761652
-
Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering
-
Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering
-
Shor L, Guceri S, Chang R, Gordon J, Kang Q, Hartsock L, An Y and Sun W 2009 Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering Biofabrication 1 015003
-
(2009)
Biofabrication
, vol.1
, Issue.1
-
-
Shor, L.1
Guceri, S.2
Chang, R.3
Gordon, J.4
Kang, Q.5
Hartsock, L.6
An, Y.7
Sun, W.8
-
9
-
-
84868210194
-
Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture
-
331-9
-
Lin H, Zhang D, Alexander P G, Yang G, Tan J, Cheng A W and Tuan R S 2013 Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture Biomaterials 34 331-9
-
(2013)
Biomaterials
, vol.34
, pp. 331-339
-
-
Lin, H.1
Zhang, D.2
Alexander, P.G.3
Yang, G.4
Tan, J.5
Cheng, A.W.6
Tuan, R.S.7
-
10
-
-
77953651502
-
A review on stereolithography and its applications in biomedical engineering
-
6121-30
-
Melchels F P, Feijen J and Grijpma D W 2010 A review on stereolithography and its applications in biomedical engineering Biomaterials 31 6121-30
-
(2010)
Biomaterials
, vol.31
, pp. 6121-6130
-
-
Melchels, F.P.1
Feijen, J.2
Grijpma, D.W.3
-
11
-
-
78649529363
-
Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins
-
Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins 34-41
-
Seck T M, Melchels F P W, Feijen J and Grijpma D W 2010 Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins J. Control. Release 148 34-41
-
(2010)
J. Control. Release
, vol.148
, pp. 34-41
-
-
Seck, T.M.1
Melchels, F.P.W.2
Feijen, J.3
Grijpma, D.W.4
-
12
-
-
84918826829
-
Biodegradable photocrosslinkable poly(depsipeptide-co-ε-caprolactone) for tissue engineering: Synthesis, characterization, and in vitro evaluation
-
Biodegradable photocrosslinkable poly(depsipeptide-co-epsiv;-caprolactone) for tissue engineering: synthesis, characterization, and in vitro evaluation 3307-15
-
Elomaa L, Kang Y, Seppälä J V and Yang Y 2014 Biodegradable photocrosslinkable poly(depsipeptide-co-ε-caprolactone) for tissue engineering: synthesis, characterization, and in vitro evaluation J. Polym. Sci. A 52 3307-15
-
(2014)
J. Polym. Sci.
, vol.52
, pp. 3307-3315
-
-
Elomaa, L.1
Kang, Y.2
Seppälä, J.V.3
Yang, Y.4
-
13
-
-
33748922161
-
A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds
-
396-405
-
Lu Y, Mapili G, Suhali G, Chen S and Roy K 2006 A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds J. Biomed. Mater. Res. A 77 396-405
-
(2006)
J. Biomed. Mater. Res.
, vol.77
, pp. 396-405
-
-
Lu, Y.1
Mapili, G.2
Suhali, G.3
Chen, S.4
Roy, K.5
-
14
-
-
67349157548
-
A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography
-
A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography 3801-9
-
Melchels F P, Feijen J and Grijpma D W 2009 A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography Biomaterials 30 3801-9
-
(2009)
Biomaterials
, vol.30
, pp. 3801-3809
-
-
Melchels, F.P.1
Feijen, J.2
Grijpma, D.W.3
-
15
-
-
84868125762
-
Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology
-
130-9
-
Xu T, Zhao W, Zhu J M, Albanna M Z, Yoo J J and Atala A 2013 Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology Biomaterials 34 130-9
-
(2013)
Biomaterials
, vol.34
, pp. 130-139
-
-
Xu, T.1
Zhao, W.2
Zhu, J.M.3
Albanna, M.Z.4
Yoo, J.J.5
Atala, A.6
-
16
-
-
2942557434
-
Inkjet printing of viable mammalian cells
-
93-9
-
Xu T, Jin J, Gregory C, Hickman J J and Boland T 2005 Inkjet printing of viable mammalian cells Biomaterials 26 93-9
-
(2005)
Biomaterials
, vol.26
, pp. 93-99
-
-
Xu, T.1
Jin, J.2
Gregory, C.3
Hickman, J.J.4
Boland, T.5
-
17
-
-
84900988712
-
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
-
3124-30
-
Kolesky D B, Truby R L, Gladman A S, Busbee T A, Homan K A and Lewis J A 2014 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs Adv. Mater. 26 3124-30
-
(2014)
Adv. Mater.
, vol.26
, pp. 3124-3130
-
-
Kolesky, D.B.1
Truby, R.L.2
Gladman, A.S.3
Busbee, T.A.4
Homan, K.A.5
Lewis, J.A.6
-
18
-
-
84889076007
-
Mechanical characterization of bioprinted in vitro soft tissue models
-
Zhang T, Yan K C, Ouyang L and Sun W 2013 Mechanical characterization of bioprinted in vitro soft tissue models Biofabrication 5 045010
-
(2013)
Biofabrication
, vol.5
, Issue.4
-
-
Zhang, T.1
Yan, K.C.2
Ouyang, L.3
Sun, W.4
-
19
-
-
84899574160
-
A comparative study on collagen type i and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting
-
Park J Y, Choi J C, Shim J H, Lee J S, Park H, Kim S W, Doh J and Cho D W 2014 A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting Biofabrication 6 035004
-
(2014)
Biofabrication
, vol.6
, Issue.3
-
-
Park, J.Y.1
Choi, J.C.2
Shim, J.H.3
Lee, J.S.4
Park, H.5
Kim, S.W.6
Doh, J.7
Cho, D.W.8
-
20
-
-
78649565673
-
Laser printing of cells into 3D scaffolds
-
Ovsianikov A, Gruene M, Pflaum M, Koch L, Maiorana F, Wilhelmi M, Haverich A and Chichkov B 2010 Laser printing of cells into 3D scaffolds Biofabrication 2 014104
-
(2010)
Biofabrication
, vol.2
, Issue.1
-
-
Ovsianikov, A.1
Gruene, M.2
Pflaum, M.3
Koch, L.4
Maiorana, F.5
Wilhelmi, M.6
Haverich, A.7
Chichkov, B.8
-
21
-
-
3042597735
-
Biological laser printing: A novel technique for creating heterogeneous 3-dimensional cell patterns
-
139-47
-
Barron J A, Wu P, Ladouceur H D and Ringeisen B R 2004 Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns Biomed. Microdevices 6 139-47
-
(2004)
Biomed. Microdevices
, vol.6
, pp. 139-147
-
-
Barron, J.A.1
Wu, P.2
Ladouceur, H.D.3
Ringeisen, B.R.4
-
22
-
-
77955276061
-
High-throughput laser printing of cells and biomaterials for tissue engineering
-
2494-500
-
Guillemot F et al 2010 High-throughput laser printing of cells and biomaterials for tissue engineering Acta Biomater. 6 2494-500
-
(2010)
Acta Biomater.
, vol.6
, pp. 2494-2500
-
-
Guillemot, F.1
-
23
-
-
0037082740
-
Fused deposition modeling of novel scaffold architectures for tissue engineering applications
-
1169-85
-
Zein I, Hutmacher D W, Tan K C and Teoh S H 2002 Fused deposition modeling of novel scaffold architectures for tissue engineering applications Biomaterials 23 1169-85
-
(2002)
Biomaterials
, vol.23
, pp. 1169-1185
-
-
Zein, I.1
Hutmacher, D.W.2
Tan, K.C.3
Teoh, S.H.4
-
24
-
-
71449086264
-
Polycaprolactone scaffolds fabricated via bioextrusion for tissue engineering applications
-
2009
-
Domingos M, Dinucci D, Cometa S, Alderighi M, Bartolo P J and Chiellini F 2009 Polycaprolactone scaffolds fabricated via bioextrusion for tissue engineering applications Int. J. Biomater. 2009 239643
-
(2009)
Int. J. Biomater.
, vol.2009
-
-
Domingos, M.1
Dinucci, D.2
Cometa, S.3
Alderighi, M.4
Bartolo, P.J.5
Chiellini, F.6
-
25
-
-
0042827798
-
Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling
-
S103-12 (Suppl 1)
-
Cao T, Ho K H and Teoh S H 2003 Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling Tissue Eng. 9 S103-12 (Suppl 1)
-
(2003)
Tissue Eng.
, vol.9
, pp. S103-S112
-
-
Cao, T.1
Ho, K.H.2
Teoh, S.H.3
-
26
-
-
84891350950
-
3D printed PLA-based scaffolds: A versatile tool in regenerative medicine
-
239-44
-
Serra T, Mateos-Timoneda M A, Planell J A and Navarro M 2013 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine Organogenesis 9 239-44
-
(2013)
Organogenesis
, vol.9
, pp. 239-244
-
-
Serra, T.1
Mateos-Timoneda, M.A.2
Planell, J.A.3
Navarro, M.4
-
27
-
-
84873166089
-
High-resolution PLA-based composite scaffolds via 3D printing technology
-
5521-30
-
Serra T, Planell J A and Navarro M 2013 High-resolution PLA-based composite scaffolds via 3D printing technology Acta Biomater. 9 5521-30
-
(2013)
Acta Biomater.
, vol.9
, pp. 5521-5530
-
-
Serra, T.1
Planell, J.A.2
Navarro, M.3
-
28
-
-
77951170998
-
Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes
-
510-9
-
Shanjani Y, De Croos J N, Pilliar R M, Kandel R A and Toyserkani E 2010 Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes J. Biomed. Mater. Res. B Appl. Biomater. 93 510-9
-
(2010)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.93
, pp. 510-519
-
-
Shanjani, Y.1
De Croos, J.N.2
Pilliar, R.M.3
Kandel, R.A.4
Toyserkani, E.5
-
29
-
-
84880510713
-
Solid freeform fabrication of porous calcium polyphosphate structures for bone substitute applications: In vivo studies
-
972-80
-
Shanjani Y, Hu Y, Toyserkani E, Grynpas M, Kandel R A and Pilliar R M 2013 Solid freeform fabrication of porous calcium polyphosphate structures for bone substitute applications: in vivo studies J. Biomed. Mater. Res. B Appl. Biomater. 101 972-80
-
(2013)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.101
, pp. 972-980
-
-
Shanjani, Y.1
Hu, Y.2
Toyserkani, E.3
Grynpas, M.4
Kandel, R.A.5
Pilliar, R.M.6
-
30
-
-
33744832163
-
Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications
-
457-66
-
Miranda P, Saiz E, Gryn K and Tomsia A P 2006 Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications Acta Biomater. 2 457-66
-
(2006)
Acta Biomater.
, vol.2
, pp. 457-466
-
-
Miranda, P.1
Saiz, E.2
Gryn, K.3
Tomsia, A.P.4
-
31
-
-
84866055893
-
Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds
-
Hockaday L A et al 2012 Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds Biofabrication 4 035005
-
(2012)
Biofabrication
, vol.4
, Issue.3
-
-
Hockaday, L.A.1
-
32
-
-
84908222844
-
Engineering alginate as bioink for bioprinting
-
4323-31
-
Jia J et al 2014 Engineering alginate as bioink for bioprinting Acta Biomater. 10 4323-31
-
(2014)
Acta Biomater.
, vol.10
, pp. 4323-4331
-
-
Jia, J.1
-
33
-
-
84884211629
-
3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
-
1255-64
-
Duan B, Hockaday L A, Kang K H and Butcher J T 2013 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels J. Biomed. Mater. Res A 101 1255-64
-
(2013)
J. Biomed. Mater. Res
, vol.101
, pp. 1255-1264
-
-
Duan, B.1
Hockaday, L.A.2
Kang, K.H.3
Butcher, J.T.4
-
34
-
-
79955806815
-
Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting
-
1831-8
-
Pescosolido L, Schuurman W, Malda J, Matricardi P, Alhaique F, Coviello T, van Weeren P R, Dhert W J A, Hennink W E and Vermonden T 2011 Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting Biomacromolecules 12 1831-8
-
(2011)
Biomacromolecules
, vol.12
, pp. 1831-1838
-
-
Pescosolido, L.1
Schuurman, W.2
Malda, J.3
Matricardi, P.4
Alhaique, F.5
Coviello, T.6
Van Weeren, P.R.7
Dhert, W.J.A.8
Hennink, W.E.9
Vermonden, T.10
-
35
-
-
84904308833
-
3D biofabrication strategies for tissue engineering and regenerative medicine
-
247-76
-
Bajaj P, Schweller R M, Khademhosseini A, West J L and Bashir R 2014 3D biofabrication strategies for tissue engineering and regenerative medicine Annu. Rev. Biomed. Eng. 16 247-76
-
(2014)
Annu. Rev. Biomed. Eng.
, vol.16
, pp. 247-276
-
-
Bajaj, P.1
Schweller, R.M.2
Khademhosseini, A.3
West, J.L.4
Bashir, R.5
-
36
-
-
0007918155
-
Mechanical properties of bone
-
An Y H ed Y H An and R A Draughn (Boca Raton, FL: CRC Press) pp 50-1
-
An Y H 2000 Mechanical properties of bone Mechanical Testing of Bone and the Bone-Implant Interface ed Y H An and R A Draughn (Boca Raton, FL: CRC Press) pp 50-1
-
(2000)
Mechanical Testing of Bone and the Bone-Implant Interface
, pp. 50-51
-
-
An, Y.H.1
-
37
-
-
33747152561
-
Matrix elasticity directs stem cell lineage specification
-
677-89
-
Engler A J, Sen S, Sweeney H L and Discher D E 2006 Matrix elasticity directs stem cell lineage specification Cell 126 677-89
-
(2006)
Cell
, vol.126
, pp. 677-689
-
-
Engler, A.J.1
Sen, S.2
Sweeney, H.L.3
Discher, D.E.4
-
38
-
-
84920138313
-
Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction
-
57-62
-
Zopf D A, Mitsak A G, Flanagan C L, Wheeler M, Green G E and Hollister S J 2015 Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction Otolaryngol. Head Neck Surg. 152 57-62
-
(2015)
Otolaryngol. Head Neck Surg.
, vol.152
, pp. 57-62
-
-
Zopf, D.A.1
Mitsak, A.G.2
Flanagan, C.L.3
Wheeler, M.4
Green, G.E.5
Hollister, S.J.6
-
39
-
-
79955002033
-
Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction
-
2444-50
-
Fairbanks B D, Singh S P, Bowman C N and Anseth K S 2011 Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction Macromolecules 44 2444-50
-
(2011)
Macromolecules
, vol.44
, pp. 2444-2450
-
-
Fairbanks, B.D.1
Singh, S.P.2
Bowman, C.N.3
Anseth, K.S.4
-
40
-
-
84954100357
-
Additive manufactured prevascularized tissue engineering constructs (#1155)
-
Additive manufactured prevascularized tissue engineering constructs (#1155) (Las Vegas, NV,)
-
Shanjani Y, Kang Y and Yang Y P 2015 Additive manufactured prevascularized tissue engineering constructs (#1155) Orthopaedic Research Society Annual Meeting (Las Vegas, NV,)
-
(2015)
Orthopaedic Research Society Annual Meeting
-
-
Shanjani, Y.1
Kang, Y.2
Yang, Y.P.3
-
41
-
-
77956090298
-
Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting
-
2675-85
-
Skardal A, Zhang J, McCoard L, Xu X, Oottamasathien S and Prestwich G D 2010 Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting Tissue Eng. A 16 2675-85
-
(2010)
Tissue Eng.
, vol.16
, pp. 2675-2685
-
-
Skardal, A.1
Zhang, J.2
McCoard, L.3
Xu, X.4
Oottamasathien, S.5
Prestwich, G.D.6
-
42
-
-
69249208450
-
Scaffold-free vascular tissue engineering using bioprinting
-
5910-7
-
Norotte C, Marga F S, Niklason L E and Forgacs G 2009 Scaffold-free vascular tissue engineering using bioprinting Biomaterials 30 5910-7
-
(2009)
Biomaterials
, vol.30
, pp. 5910-5917
-
-
Norotte, C.1
Marga, F.S.2
Niklason, L.E.3
Forgacs, G.4
-
43
-
-
65649152928
-
Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology
-
249-65
-
Shengjie L, Zhuo X, Xiaohong W, Yongnian Y, Haixia L and Renji Z 2009 Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology J. Bioact. Compat. Polym. 24 249-65
-
(2009)
J. Bioact. Compat. Polym.
, vol.24
, pp. 249-265
-
-
Shengjie, L.1
Zhuo, X.2
Xiaohong, W.3
Yongnian, Y.4
Haixia, L.5
Renji, Z.6
-
44
-
-
84946497789
-
An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering
-
1286-97
-
Kundu J, Shim J H, Jang J, Kim S W and Cho D W 2015 An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering J. Tissue Eng. Regen. Med. 9 1286-97
-
(2015)
J. Tissue Eng. Regen. Med.
, vol.9
, pp. 1286-1297
-
-
Kundu, J.1
Shim, J.H.2
Jang, J.3
Kim, S.W.4
Cho, D.W.5
-
45
-
-
84883122624
-
Biofabrication of multi-material anatomically shaped tissue constructs
-
Visser J, Peters B, Burger T J, Boomstra J, Dhert W J, Melchels F P and Malda J 2013 Biofabrication of multi-material anatomically shaped tissue constructs Biofabrication 5 035007
-
(2013)
Biofabrication
, vol.5
, Issue.3
-
-
Visser, J.1
Peters, B.2
Burger, T.J.3
Boomstra, J.4
Dhert, W.J.5
Melchels, F.P.6
Malda, J.7
-
46
-
-
84864459017
-
Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system
-
Shim J-H, Lee J-S, Kim J Y and Cho D-W 2012 Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system J. Micromech. Microeng. 22 085014
-
(2012)
J. Micromech. Microeng.
, vol.22
, Issue.8
-
-
Shim, J.-H.1
Lee, J.-S.2
Kim, J.Y.3
Cho, D.-W.4
-
47
-
-
82055196987
-
Bioprinting of hybrid tissue constructs with tailorable mechanical properties
-
Schuurman W, Khristov V, Pot M W, van Weeren P R, Dhert W J and Malda J 2011 Bioprinting of hybrid tissue constructs with tailorable mechanical properties Biofabrication 3 021001
-
(2011)
Biofabrication
, vol.3
, Issue.2
-
-
Schuurman, W.1
Khristov, V.2
Pot, M.W.3
Van Weeren, P.R.4
Dhert, W.J.5
Malda, J.6
-
48
-
-
84878147219
-
Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs
-
551-61
-
Schuurman W, Levett P A, Pot M W, van Weeren P R, Dhert W J A, Hutmacher D W, Melchels F P W, Klein T J and Malda J 2013 Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs Macromol. Biosci. 13 551-61
-
(2013)
Macromol. Biosci.
, vol.13
, pp. 551-561
-
-
Schuurman, W.1
Levett, P.A.2
Pot, M.W.3
Van Weeren, P.R.4
Dhert, W.J.A.5
Hutmacher, D.W.6
Melchels, F.P.W.7
Klein, T.J.8
Malda, J.9
-
49
-
-
84901923061
-
Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
-
Pati F, Jang J, Ha D H, Won Kim S, Rhie J W, Shim J H, Kim D H and Cho D W 2014 Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink Nat. Commun. 5 3935
-
(2014)
Nat. Commun.
, vol.5
, pp. 3935
-
-
Pati, F.1
Jang, J.2
Ha, D.H.3
Won Kim, S.4
Rhie, J.W.5
Shim, J.H.6
Kim, D.H.7
Cho, D.W.8
-
50
-
-
85065220413
-
Controlled positioning of cells in biomaterials - Approaches towards 3D tissue printing
-
119-54
-
Wust S, Muller R and Hofmann S 2011 Controlled positioning of cells in biomaterials - approaches towards 3D tissue printing J. Funct. Biomater. 2 119-54
-
(2011)
J. Funct. Biomater.
, vol.2
, pp. 119-154
-
-
Wust, S.1
Muller, R.2
Hofmann, S.3
-
51
-
-
84922233614
-
Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking
-
Irvine S A, Agrawal A, Lee B H, Chua H Y, Low K Y, Lau B C, Machluf M and Venkatraman S 2015 Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking Biomed. Microdevices 17 16
-
(2015)
Biomed. Microdevices
, vol.17
, pp. 16
-
-
Irvine, S.A.1
Agrawal, A.2
Lee, B.H.3
Chua, H.Y.4
Low, K.Y.5
Lau, B.C.6
Machluf, M.7
Venkatraman, S.8
-
52
-
-
79953144743
-
The mechanisms of UV mutagenesis
-
115-25
-
Ikehata H and Ono T 2011 The mechanisms of UV mutagenesis J. Radiat. Res. 52 115-25
-
(2011)
J. Radiat. Res.
, vol.52
, pp. 115-125
-
-
Ikehata, H.1
Ono, T.2
-
53
-
-
84861826955
-
Direct human cartilage repair using three-dimensional bioprinting technology
-
1304-12
-
Cui X, Breitenkamp K, Finn M G, Lotz M and D'Lima D D 2012 Direct human cartilage repair using three-dimensional bioprinting technology Tissue Eng. A 18 1304-12
-
(2012)
Tissue Eng.
, vol.18
, pp. 1304-1312
-
-
Cui, X.1
Breitenkamp, K.2
Finn, M.G.3
Lotz, M.4
D'Lima, D.D.5
-
54
-
-
84899520611
-
Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels
-
Bertassoni L E et al 2014 Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels Biofabrication 6 024105
-
(2014)
Biofabrication
, vol.6
, Issue.2
-
-
Bertassoni, L.E.1
-
55
-
-
84901915693
-
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
-
2202-11
-
Bertassoni L E et al 2014 Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs Lab Chip 14 2202-11
-
(2014)
Lab Chip
, vol.14
, pp. 2202-2211
-
-
Bertassoni, L.E.1
-
56
-
-
77957588918
-
The return of a forgotten polymer - Polycaprolactone in the 21st century
-
1217-56
-
Woodruff M A and Hutmacher D W 2010 The return of a forgotten polymer - polycaprolactone in the 21st century Prog. Polym. Sci. 35 1217-56
-
(2010)
Prog. Polym. Sci.
, vol.35
, pp. 1217-1256
-
-
Woodruff, M.A.1
Hutmacher, D.W.2
-
57
-
-
26844462430
-
Formation of a nucleus pulposus-cartilage endplate construct in vitro
-
397-405
-
Hamilton D J, Seguin C A, Wang J, Pilliar R M and Kandel R A 2006 Formation of a nucleus pulposus-cartilage endplate construct in vitro Biomaterials 27 397-405
-
(2006)
Biomaterials
, vol.27
, pp. 397-405
-
-
Hamilton, D.J.1
Seguin, C.A.2
Wang, J.3
Pilliar, R.M.4
Kandel, R.A.5
-
58
-
-
0026323361
-
Mechanical strength of osteochondral junction
-
1070-7
-
Kumar P, Oka M, Nakamura T, Yamamuro T and Delecrin J 1991 Mechanical strength of osteochondral junction Nihon Seikeigeka Gakkai Zasshi 65 1070-7
-
(1991)
Nihon Seikeigeka Gakkai Zasshi
, vol.65
, pp. 1070-1077
-
-
Kumar, P.1
Oka, M.2
Nakamura, T.3
Yamamuro, T.4
Delecrin, J.5
-
59
-
-
28744456593
-
Mechanical characterization of native and tissue-engineered cartilage
-
157-90
-
Chen A C, Klisch S M, Bae W C, Temple M M, McGowan K B, Gratz K R, Schumacher B L and Sah R L 2004 Mechanical characterization of native and tissue-engineered cartilage Methods Mol. Med. 101 157-90
-
(2004)
Methods Mol. Med.
, vol.101
, pp. 157-190
-
-
Chen, A.C.1
Klisch, S.M.2
Bae, W.C.3
Temple, M.M.4
McGowan, K.B.5
Gratz, K.R.6
Schumacher, B.L.7
Sah, R.L.8
-
60
-
-
33847042303
-
Osteochondral tissue engineering
-
750-65
-
Martin I, Miot S, Barbero A, Jakob M and Wendt D 2007 Osteochondral tissue engineering J. Biomech. 40 750-65
-
(2007)
J. Biomech.
, vol.40
, pp. 750-765
-
-
Martin, I.1
Miot, S.2
Barbero, A.3
Jakob, M.4
Wendt, D.5
-
61
-
-
77951089569
-
Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering
-
Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering 4639-56
-
Zhu J 2010 Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering Biomaterials 31 4639-56
-
(2010)
Biomaterials
, vol.31
, pp. 4639-4656
-
-
Zhu, J.1
-
62
-
-
84945278577
-
Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography
-
Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography 8348-58
-
Elomaa L, Pan C C, Shanjani Y, Malkovskiy A, Seppälä J V and Yang Y 2015 Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography J. Mater. Chem. B 3 8348-58
-
(2015)
J. Mater. Chem.
, vol.3
, pp. 8348-8358
-
-
Elomaa, L.1
Pan, C.C.2
Shanjani, Y.3
Malkovskiy, A.4
Seppälä, J.V.5
Yang, Y.6
-
63
-
-
45549085001
-
Osteogenesis and angiogenesis: The potential for engineering bone
-
100-14
-
Kanczler J M and Oreffo R O 2008 Osteogenesis and angiogenesis: the potential for engineering bone Eur. Cell Mater. 15 100-14
-
(2008)
Eur. Cell Mater.
, vol.15
, pp. 100-114
-
-
Kanczler, J.M.1
Oreffo, R.O.2
-
64
-
-
0002767351
-
The structure and development of bone
-
Marks S C and Hermey D C ed J P Bilezikian, L G Raisz and G A Rodan (New York: Academic) pp 3-14
-
Marks S C and Hermey D C 1996 The structure and development of bone Principles of Bone Biology ed J P Bilezikian, L G Raisz and G A Rodan (New York: Academic) pp 3-14
-
(1996)
Principles of Bone Biology
, pp. 3-14
-
-
Marks, S.C.1
Hermey, D.C.2
-
66
-
-
84862814356
-
Intraluminal thrombus has a selective influence on matrix metalloproteinases and their inhibitors (tissue inhibitors of matrix metalloproteinases) in the wall of abdominal aortic aneurysms
-
Intraluminal thrombus has a selective influence on matrix metalloproteinases and their inhibitors (tissue inhibitors of matrix metalloproteinases) in the wall of abdominal aortic aneurysms 322-9
-
Khan J A, Abdul Rahman M N A, Mazari F A K, Shahin Y, Smith G, Madden L, Fagan M J, Greenman J, McCollum P T and Chetter I C 2012 Intraluminal thrombus has a selective influence on matrix metalloproteinases and their inhibitors (tissue inhibitors of matrix metalloproteinases) in the wall of abdominal aortic aneurysms Ann. Vasc. Surg. 26 322-9
-
(2012)
Ann. Vasc. Surg.
, vol.26
, pp. 322-329
-
-
Khan, J.A.1
Abdul Rahman, M.N.A.2
Mazari, F.A.K.3
Shahin, Y.4
Smith, G.5
Madden, L.6
Fagan, M.J.7
Greenman, J.8
McCollum, P.T.9
Chetter, I.C.10
-
67
-
-
84925013339
-
Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach
-
449-58
-
Kang Y, Mochizuki N, Khademhosseini A, Fukuda J and Yang Y 2015 Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach Acta Biomater. 11 449-58
-
(2015)
Acta Biomater.
, vol.11
, pp. 449-458
-
-
Kang, Y.1
Mochizuki, N.2
Khademhosseini, A.3
Fukuda, J.4
Yang, Y.5
|