메뉴 건너뛰기




Volumn 2015-August, Issue , 2015, Pages 1503-1512

Multi-task learning for spatio-temporal event forecasting

Author keywords

Dynamic query expansion; Event forecasting; Hard thresholding; LASSO; Multi task learning

Indexed keywords

ALGORITHMS; DATA MINING; EXPANSION; ITERATIVE METHODS; LEARNING SYSTEMS; LOCATION; SOCIAL NETWORKING (ONLINE);

EID: 84954148765     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2783258.2783377     Document Type: Conference Paper
Times cited : (149)

References (36)
  • 1
    • 64149107285 scopus 로고    scopus 로고
    • A new approach to collaborative filtering: Operator estimation with spectral regularization
    • J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert. A new approach to collaborative filtering: Operator estimation with spectral regularization. The Journal of Machine Learning Research, 10:803-826, 2009.
    • (2009) The Journal of Machine Learning Research , vol.10 , pp. 803-826
    • Abernethy, J.1    Bach, F.2    Evgeniou, T.3    Vert, J.-P.4
  • 3
    • 84880245506 scopus 로고    scopus 로고
    • Event detection in social streams
    • C. C. Aggarwal and K. Subbian. Event detection in social streams. In SDM, pages 624-635, 2012.
    • (2012) SDM , pp. 624-635
    • Aggarwal, C.C.1    Subbian, K.2
  • 4
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6:1817-1853, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1817-1853
    • Ando, R.1    Zhang, T.2
  • 7
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 10
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • R. Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997.
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 12
    • 12244250351 scopus 로고    scopus 로고
    • Regularized multi-task learning
    • ACM
    • T. Evgeniou and M. Pontil. Regularized multi-task learning. In KDD 2004, pages 109-117. ACM, 2004.
    • (2004) KDD 2004 , pp. 109-117
    • Evgeniou, T.1    Pontil, M.2
  • 13
    • 84897492871 scopus 로고    scopus 로고
    • Predicting crime using twitter and kernel density estimation
    • M. S. Gerber. Predicting crime using Twitter and kernel density estimation. Decision Support Systems, 61:115-125, 2014.
    • (2014) Decision Support Systems , vol.61 , pp. 115-125
    • Gerber, M.S.1
  • 14
    • 84897545592 scopus 로고    scopus 로고
    • A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems
    • NIH Public Access, 2013
    • P. Gong, C. Zhang, Z. Lu, J. Z. Huang, and J. Ye. A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. In ICML, Volume 28, page 37. NIH Public Access, 2013.
    • ICML , vol.28 , pp. 37
    • Gong, P.1    Zhang, C.2    Lu, Z.3    Huang, J.Z.4    Ye, J.5
  • 15
    • 84896061078 scopus 로고    scopus 로고
    • Improving traffic prediction with tweet semantics
    • J. He, W. Shen, P. Divakaruni, L. Wynter, and R. Lawrence. Improving traffic prediction with tweet semantics. In IJCAI, pages 1387-1393, 2013.
    • (2013) IJCAI , pp. 1387-1393
    • He, J.1    Shen, W.2    Divakaruni, P.3    Wynter, L.4    Lawrence, R.5
  • 16
    • 71149103464 scopus 로고    scopus 로고
    • An accelerated gradient method for trace norm minimization
    • ACM
    • S. Ji and J. Ye. An accelerated gradient method for trace norm minimization. In ICML 2009, pages 457-464. ACM, 2009.
    • (2009) ICML 2009 , pp. 457-464
    • Ji, S.1    Ye, J.2
  • 17
    • 84907033467 scopus 로고    scopus 로고
    • Modeling mass protest adoption in social network communities using geometric brownian motion
    • ACM
    • F. Jin, R. P. Khandpur, N. Self, E. Dougherty, S. Guo, F. Chen, B. A. Prakash, and N. Ramakrishnan. Modeling mass protest adoption in social network communities using geometric brownian motion. In KDD 2014, pages 1660-1669. ACM, 2014.
    • (2014) KDD 2014 , pp. 1660-1669
    • Jin, F.1    Khandpur, R.P.2    Self, N.3    Dougherty, E.4    Guo, S.5    Chen, F.6    Prakash, B.A.7    Ramakrishnan, N.8
  • 19
    • 84863771926 scopus 로고    scopus 로고
    • On the spatiotemporal burstiness of terms
    • T. Lappas, M. R. Vieira, D. Gunopulos, and V. J. Tsotras. On the spatiotemporal burstiness of terms. VLDB, 5(9):836-847, 2012.
    • (2012) VLDB , vol.5 , Issue.9 , pp. 836-847
    • Lappas, T.1    Vieira, M.R.2    Gunopulos, D.3    Tsotras, V.J.4
  • 20
    • 84970880189 scopus 로고    scopus 로고
    • MITRE. http://www.mitre.org/.
  • 21
    • 84890614558 scopus 로고    scopus 로고
    • From tweets to polls: Linking text sentiment to public opinion time series
    • B. O'Connor, R. Balasubramanyan, B. R. Routledge, and N. A. Smith. From tweets to polls: Linking text sentiment to public opinion time series. ICWSM, 11:122-129, 2010.
    • (2010) ICWSM , vol.11 , pp. 122-129
    • O'Connor, B.1    Balasubramanyan, R.2    Routledge, B.R.3    Smith, N.A.4
  • 24
    • 77954571408 scopus 로고    scopus 로고
    • Earthquake shakes twitter users: Real-time event detection by social sensors
    • T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes Twitter users: real-time event detection by social sensors. In WWW, pages 851-860, 2010.
    • (2010) WWW , pp. 851-860
    • Sakaki, T.1    Okazaki, M.2    Matsuo, Y.3
  • 25
    • 84907020150 scopus 로고    scopus 로고
    • Signitrend: Scalable detection of emerging topics in textual streams by hashed significance thresholds
    • ACM
    • E. Schubert, M. Weiler, and H.-P. Kriegel. Signitrend: scalable detection of emerging topics in textual streams by hashed significance thresholds. In KDD 2014, pages 871-880. ACM, 2014.
    • (2014) KDD 2014 , pp. 871-880
    • Schubert, E.1    Weiler, M.2    Kriegel, H.-P.3
  • 26
    • 79955757514 scopus 로고    scopus 로고
    • The use of twitter to track levels of disease activity and public concern in the us during the influenza an H1N1 pandemic
    • A. Signorini, A. M. Segre, and P. M. Polgreen. The use of Twitter to track levels of disease activity and public concern in the us during the influenza an H1N1 pandemic. PloS one, 6(5):e19467, 2011.
    • (2011) PloS One , vol.6 , Issue.5
    • Signorini, A.1    Segre, A.M.2    Polgreen, P.M.3
  • 27
    • 0010687621 scopus 로고    scopus 로고
    • Clustering learning tasks and the selective cross-task transfer of knowledge
    • S. Thrun and J. O'Sullivan. Clustering learning tasks and the selective cross-task transfer of knowledge. Learning to learn, pages 181-209, 1998.
    • (1998) Learning to Learn , pp. 181-209
    • Thrun, S.1    O'Sullivan, J.2
  • 29
    • 84890668120 scopus 로고    scopus 로고
    • Predicting elections with twitter: What 140 characters reveal about political sentiment
    • A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M. Welpe. Predicting elections with Twitter: What 140 characters reveal about political sentiment. ICWSM, 10:178-185, 2010.
    • (2010) ICWSM , vol.10 , pp. 178-185
    • Tumasjan, A.1    Sprenger, T.O.2    Sandner, P.G.3    Welpe, I.M.4
  • 30
    • 84867370068 scopus 로고    scopus 로고
    • Spatio-temporal modeling of criminal incidents using geographic, demographic, and twitter-derived information
    • X. Wang, D. E. Brown, and M. S. Gerber. Spatio-temporal modeling of criminal incidents using geographic, demographic, and Twitter-derived information. In ISI, pages 36-41, 2012.
    • (2012) ISI , pp. 36-41
    • Wang, X.1    Brown, D.E.2    Gerber, M.S.3
  • 32
    • 85099781634 scopus 로고    scopus 로고
    • Event detection in twitter
    • J. Weng and B.-S. Lee. Event detection in twitter. ICWSM, 11:401-408, 2011.
    • (2011) ICWSM , vol.11 , pp. 401-408
    • Weng, J.1    Lee, B.-S.2
  • 33
    • 84907033131 scopus 로고    scopus 로고
    • Simultaneous feature and feature group selection through hard thresholding
    • ACM
    • S. Xiang, T. Yang, and J. Ye. Simultaneous feature and feature group selection through hard thresholding. In KDD 2014, pages 532-541. ACM, 2014.
    • (2014) KDD 2014 , pp. 532-541
    • Xiang, S.1    Yang, T.2    Ye, J.3
  • 34
    • 84908576893 scopus 로고    scopus 로고
    • Unsupervised spatial event detection in targeted domains with applications to civil unrest modeling
    • L. Zhao, F. Chen, J. Dai, T. Hua, C.-T. Lu, and N. Ramakrishnan. Unsupervised spatial event detection in targeted domains with applications to civil unrest modeling. PloS one, 9(10):e110206, 2014.
    • (2014) PloS One , vol.9 , Issue.10
    • Zhao, L.1    Chen, F.2    Dai, J.3    Hua, T.4    Lu, C.-T.5    Ramakrishnan, N.6
  • 35
    • 84961943223 scopus 로고    scopus 로고
    • Spatiotemporal event forecasting in social media
    • SIAM
    • L. Zhao, F. Chen, C.-T. Lu, and N. Ramakrishnan. Spatiotemporal event forecasting in social media. In SDM 15, pages 963-971. SIAM, 2015.
    • (2015) SDM 15 , pp. 963-971
    • Zhao, L.1    Chen, F.2    Lu, C.-T.3    Ramakrishnan, N.4
  • 36
    • 84897736455 scopus 로고    scopus 로고
    • MALSAR: Multi-tAsk learning via StructurAl regularization
    • J. Zhou, J. Chen, and J. Ye. MALSAR: Multi-tAsk Learning via StructurAl Regularization. Arizona State University, 2011.
    • (2011) Arizona State University
    • Zhou, J.1    Chen, J.2    Ye, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.