메뉴 건너뛰기




Volumn 5, Issue 9, 2012, Pages 836-847

On the spatiotemporal burstiness of terms

Author keywords

[No Author keywords available]

Indexed keywords

BURSTINESS; DOCUMENT SEARCH; EXPERIMENTAL EVALUATION; HIGH FREQUENCY HF; SYNTHETIC DATASETS;

EID: 84863771926     PISSN: None     EISSN: 21508097     Source Type: Conference Proceeding    
DOI: 10.14778/2311906.2311911     Document Type: Article
Times cited : (67)

References (35)
  • 2
    • 35348813138 scopus 로고    scopus 로고
    • Blogscope: spatio-temporal analysis of the blogosphere
    • N. Bansal and N. Koudas. Blogscope: spatio-temporal analysis of the blogosphere. In WWW, pages 1269-1270, 2007.
    • (2007) WWW , pp. 1269-1270
    • Bansal, N.1    Koudas, N.2
  • 3
    • 77954744991 scopus 로고    scopus 로고
    • Searching trajectories by locations: an efficiency study
    • Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie. Searching trajectories by locations: an efficiency study. In SIGMOD, pages 255-266, 2010.
    • (2010) SIGMOD , pp. 255-266
    • Chen, Z.1    Shen, H.T.2    Zhou, X.3    Zheng, Y.4    Xie, X.5
  • 4
    • 34250658927 scopus 로고    scopus 로고
    • System for spatio-temporal analysis of online news and blogs
    • A. Dalli. System for spatio-temporal analysis of online news and blogs. In WWW, pages 929-930, 2006.
    • (2006) WWW , pp. 929-930
    • Dalli, A.1
  • 5
    • 0030169930 scopus 로고    scopus 로고
    • Computing the maximum bichromatic discrepancy, with applications to computer graphics and machine learning
    • June
    • D. P. Dobkin, D. Gunopulos, and W. Maass. Computing the maximum bichromatic discrepancy, with applications to computer graphics and machine learning. J. Comput. Syst. Sci., 52:453-470, June 1996.
    • J. Comput. Syst. Sci. , vol.52 , pp. 453-470
    • Dobkin, D.P.1    Gunopulos, D.2    Maass, W.3
  • 6
    • 0034819889 scopus 로고    scopus 로고
    • Optimal aggregation algorithms for middleware
    • R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In PODS, 2001.
    • (2001) PODS
    • Fagin, R.1    Lotem, A.2    Naor, M.3
  • 7
    • 33745624002 scopus 로고    scopus 로고
    • Parameter free bursty events detection in text streams
    • G. P. C. Fung, J. X. Yu, P. S. Yu, and H. Lu. Parameter free bursty events detection in text streams. In VLDB, pages 181-192, 2005.
    • (2005) VLDB , pp. 181-192
    • Fung, G.P.C.1    Yu, J.X.2    Yu, P.S.3    Lu, H.4
  • 8
    • 0020246926 scopus 로고
    • Efficient algorithms for interval graphs and circular-arc graphs
    • U. I. Gupta, D. T. Lee, and J. Y.-T. Leung. Efficient algorithms for interval graphs and circular-arc graphs. Networks, 12(4):459-467, 1982.
    • (1982) Networks , vol.12 , Issue.4 , pp. 459-467
    • Gupta, U.I.1    Lee, D.T.2    Leung, J.-T.3
  • 10
    • 49749133495 scopus 로고    scopus 로고
    • Using burstiness to improve clustering of topics in news streams
    • Q. He, K. Chang, and E.-P. Lim. Using burstiness to improve clustering of topics in news streams. In ACM ICDM, pages 493-498, 2007.
    • (2007) ACM ICDM , pp. 493-498
    • He, Q.1    Chang, K.2    Lim, E.-P.3
  • 11
    • 70350718061 scopus 로고    scopus 로고
    • Bursty feature representation for clustering text streams
    • Q. He, K. Chang, E.-P. Lim, and J. Zhang. Bursty feature representation for clustering text streams. In SDM, 2007.
    • (2007) SDM
    • He, Q.1    Chang, K.2    Lim, E.-P.3    Zhang, J.4
  • 12
    • 84859203289 scopus 로고    scopus 로고
    • Discovery of convoys in trajectory databases
    • H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of convoys in trajectory databases. PVLDB, pages 1068-1080, 2008.
    • (2008) PVLDB , pp. 1068-1080
    • Jeung, H.1    Yiu, M.L.2    Zhou, X.3    Jensen, C.S.4    Shen, H.T.5
  • 13
    • 0242540464 scopus 로고    scopus 로고
    • Bursty and hierarchical structure in streams
    • J. M. Kleinberg. Bursty and hierarchical structure in streams. In KDD, pages 91-101, 2002.
    • (2002) KDD , pp. 91-101
    • Kleinberg, J.M.1
  • 14
  • 15
    • 52649161757 scopus 로고    scopus 로고
    • Trajectory outlier detection: A partition-and-detect framework
    • J.-G. Lee, J. Han, and X. Li. Trajectory outlier detection: A partition-and-detect framework. In ICDE, pages 140-149, 2008.
    • (2008) ICDE , pp. 140-149
    • Lee, J.-G.1    Han, J.2    Li, X.3
  • 16
    • 80052749496 scopus 로고    scopus 로고
    • Swarm: Mining relaxed temporal moving object clusters
    • Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving object clusters. PVLDB, 3(1):723-734, 2010.
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 723-734
    • Li, Z.1    Ding, B.2    Han, J.3    Kays, R.4
  • 18
    • 81455159027 scopus 로고    scopus 로고
    • Identifying, attributing and describing spatial bursts
    • M. Mathioudakis, N. Bansal, and N. Koudas. Identifying, attributing and describing spatial bursts. PVLDB, 3(1):1091-1102, 2010.
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 1091-1102
    • Mathioudakis, M.1    Bansal, N.2    Koudas, N.3
  • 19
    • 67649878830 scopus 로고    scopus 로고
    • A probabilistic approach to spatiotemporal theme pattern mining on weblogs
    • Q. Mei, C. Liu, H. Su, and C. Zhai. A probabilistic approach to spatiotemporal theme pattern mining on weblogs. In WWW, pages 533-542, 2006.
    • (2006) WWW , pp. 533-542
    • Mei, Q.1    Liu, C.2    Su, H.3    Zhai, C.4
  • 20
    • 33745788385 scopus 로고    scopus 로고
    • Efficient mining of emerging events in a dynamic spatiotemporal environment
    • Y. Meng and M. H. Dunham. Efficient mining of emerging events in a dynamic spatiotemporal environment. In PAKDD, pages 750-754, 2006.
    • (2006) PAKDD , pp. 750-754
    • Meng, Y.1    Dunham, M.H.2
  • 21
    • 0033288922 scopus 로고    scopus 로고
    • A linear time algorithm for finding all maximal scoring subsequences
    • AAAI Press
    • W. L. Ruzzo and M. Tompa. A linear time algorithm for finding all maximal scoring subsequences. In ISBM, pages 234-241. AAAI Press, 1999.
    • (1999) ISBM , pp. 234-241
    • Ruzzo, W.L.1    Tompa, M.2
  • 22
    • 77954571408 scopus 로고    scopus 로고
    • Earthquake shakes twitter users: real-time event detection by social sensors
    • T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes twitter users: real-time event detection by social sensors. In WWW, pages 851-860, 2010.
    • (2010) WWW , pp. 851-860
    • Sakaki, T.1    Okazaki, M.2    Matsuo, Y.3
  • 25
    • 77954566677 scopus 로고    scopus 로고
    • Situation detection and control using spatio-temporal analysis of microblogs
    • V. K. Singh, M. Gao, and R. Jain. Situation detection and control using spatio-temporal analysis of microblogs. In WWW, pages 1181-1182, 2010.
    • (2010) WWW , pp. 1181-1182
    • Singh, V.K.1    Gao, M.2    Jain, R.3
  • 26
    • 2442624432 scopus 로고    scopus 로고
    • Querying about the past, the present, and the future in spatio-temporal
    • J. Sun, D. Papadias, Y. Tao, and B. Liu. Querying about the past, the present, and the future in spatio-temporal. In ICDE, pages 202-213, 2004.
    • (2004) ICDE , pp. 202-213
    • Sun, J.1    Papadias, D.2    Tao, Y.3    Liu, B.4
  • 27
    • 84944067757 scopus 로고    scopus 로고
    • Efficient mining of spatiotemporal patterns
    • I. Tsoukatos and D. Gunopulos. Efficient mining of spatiotemporal patterns. In SSTD, pages 425-442, 2001.
    • (2001) SSTD , pp. 425-442
    • Tsoukatos, I.1    Gunopulos, D.2
  • 28
    • 74049140321 scopus 로고    scopus 로고
    • On-line discovery of flock patterns in spatio-temporal data
    • M. R. Vieira, P. Bakalov, and V. J. Tsotras. On-line discovery of flock patterns in spatio-temporal data. In SIGSPATIAL, pages 286-295, 2009.
    • (2009) SIGSPATIAL , pp. 286-295
    • Vieira, M.R.1    Bakalov, P.2    Tsotras, V.J.3
  • 29
    • 77952282874 scopus 로고    scopus 로고
    • Querying trajectories using flexible patterns
    • M. R. Vieira, P. Bakalov, and V. J. Tsotras. Querying trajectories using flexible patterns. In EDBT, pages 406-417, 2010.
    • (2010) EDBT , pp. 406-417
    • Vieira, M.R.1    Bakalov, P.2    Tsotras, V.J.3
  • 30
    • 84974990507 scopus 로고
    • Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations
    • T. Vincenty. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey Review, 22(176):88-93, 1975.
    • (1975) Survey Review , vol.22 , Issue.176 , pp. 88-93
    • Vincenty, T.1
  • 31
    • 3142717571 scopus 로고    scopus 로고
    • Identifying similarities, periodicities and bursts for online search queries
    • M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. Identifying similarities, periodicities and bursts for online search queries. In SIGMOD Conference, pages 131-142, 2004.
    • (2004) SIGMOD Conference , pp. 131-142
    • Vlachos, M.1    Meek, C.2    Vagena, Z.3    Gunopulos, D.4
  • 32
    • 0031382003 scopus 로고    scopus 로고
    • A parallel maximal cliques algorithm for interval graphs with applications
    • C.-S. Wang and R. S. Chang. A parallel maximal cliques algorithm for interval graphs with applications. J. Inf. Sci. Eng., 13(4):649-663, 1997.
    • (1997) J. Inf. Sci. Eng. , vol.13 , Issue.4 , pp. 649-663
    • Wang, C.-S.1    Chang, R.S.2
  • 33
    • 32344444779 scopus 로고    scopus 로고
    • A generalized framework for mining spatio-temporal patterns in scientific data
    • H. Yang, S. Parthasarathy, and S. Mehta. A generalized framework for mining spatio-temporal patterns in scientific data. In KDD, pages 716-721, 2005.
    • (2005) KDD , pp. 716-721
    • Yang, H.1    Parthasarathy, S.2    Mehta, S.3
  • 34
    • 84865656232 scopus 로고    scopus 로고
    • Mining interesting locations and travel sequences from gps trajectories
    • Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting locations and travel sequences from gps trajectories. In WWW, pages 791-800, 2009.
    • (2009) WWW , pp. 791-800
    • Zheng, Y.1    Zhang, L.2    Xie, X.3    Ma, W.-Y.4
  • 35
    • 77952383186 scopus 로고    scopus 로고
    • Efficient elastic burst detection in data streams
    • Y. Zhu and D. Shasha. Efficient elastic burst detection in data streams. In KDD, pages 336-345, 2003.
    • (2003) KDD , pp. 336-345
    • Zhu, Y.1    Shasha, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.