-
1
-
-
34547990286
-
Low-rank matrix factorization with attributes
-
Technical Report N24/06/MM, Ecole des Mines de Paris
-
J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert. Low-rank matrix factorization with attributes. Technical Report N24/06/MM, Ecole des Mines de Paris, 2006.
-
(2006)
-
-
Abernethy, J.1
Bach, F.2
Evgeniou, T.3
Vert, J.-P.4
-
2
-
-
34547979771
-
Uncovering shared structures in multiclass classification
-
Z. Ghahramani, editor, New York, NY, USA, ACM
-
Y. Amit, M. Fink, N. Srebro, and S. Ullman. Uncovering shared structures in multiclass classification. In Z. Ghahramani, editor, ICML '07: Proceedings of the 24th International Conference on Machine Learning, pages 17-24, New York, NY, USA, 2007. ACM.
-
(2007)
ICML '07: Proceedings of the 24th International Conference on Machine Learning
, pp. 17-24
-
-
Amit, Y.1
Fink, M.2
Srebro, N.3
Ullman, S.4
-
3
-
-
55149088329
-
Convex multi-task feature learning
-
A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Mach. Learn., 73(3): 243-272, 2008.
-
(2008)
Mach. Learn
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
4
-
-
5844297152
-
Theory of reproducing kernels
-
N. Aronszajn. Theory of reproducing kernels. Trans. Am. Math. Soc., 68:337 - 404, 1950.
-
(1950)
Trans. Am. Math. Soc
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
5
-
-
46249124832
-
Consistency of trace norm minimization
-
F. R. Bach. Consistency of trace norm minimization. J. Mach. Learn. Res., 9:1019-1048, 2008.
-
(2008)
J. Mach. Learn. Res
, vol.9
, pp. 1019-1048
-
-
Bach, F.R.1
-
6
-
-
31844446681
-
Predictive low-rank decomposition for kernel methods
-
New York, NY, USA, ACM
-
F. R. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel methods. In ICML '05: Proceedings of the 22nd International Conference on Machine Learning, pages 33-40, New York, NY, USA, 2005. ACM.
-
(2005)
ICML '05: Proceedings of the 22nd International Conference on Machine Learning
, pp. 33-40
-
-
Bach, F.R.1
Jordan, M.I.2
-
7
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
New York, NY, USA, ACM
-
F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In ICML '04: Proceedings of the Twenty-first International Conference on Machine Learning, page 6, New York, NY, USA, 2004. ACM.
-
(2004)
ICML '04: Proceedings of the Twenty-first International Conference on Machine Learning
, pp. 6
-
-
Bach, F.R.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
8
-
-
84898952043
-
Computing regularization paths for learning multiple kernels
-
L. K. Saul, Y Weiss, and L. Bottou, editors, Cambridge, MA, MIT Press
-
F. R. Bach, R. Thibaux, and M. I. Jordan. Computing regularization paths for learning multiple kernels. In L. K. Saul, Y Weiss, and L. Bottou, editors, Adv. Neural. Inform. Process Syst. 17, pages 73-80, Cambridge, MA, 2005. MIT Press.
-
(2005)
Adv. Neural. Inform. Process Syst. 17
, pp. 73-80
-
-
Bach, F.R.1
Thibaux, R.2
Jordan, M.I.3
-
11
-
-
64149102511
-
-
J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In 14th Conference on Uncertainty in Artificial Intelligence, pages 43-52, Madison, W.I., 1998. Morgan Kaufman.
-
J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In 14th Conference on Uncertainty in Artificial Intelligence, pages 43-52, Madison, W.I., 1998. Morgan Kaufman.
-
-
-
-
13
-
-
30944459068
-
Computational enhancements in low-rank semidefinite programming
-
S. A. Burer and C. Choi. Computational enhancements in low-rank semidefinite programming. Optimization Methods and Software, 21:493-512, 2006.
-
(2006)
Optimization Methods and Software
, vol.21
, pp. 493-512
-
-
Burer, S.A.1
Choi, C.2
-
14
-
-
21644465788
-
Local minima and convergence in low-rank semidefinite programming
-
S. A. Burer and R, D. C. Monteiro. Local minima and convergence in low-rank semidefinite programming. Mathematical Programming, 103:427-444, 2005.
-
(2005)
Mathematical Programming
, vol.103
, pp. 427-444
-
-
Burer, S.A.1
Monteiro, R.D.C.2
-
16
-
-
0034853839
-
A rank minimization heuristic with application to minimum order system approximation
-
M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic with application to minimum order system approximation. In Proceedings of the 2001 American Control Conference, volume 6, pages 4734-4739, 2001.
-
(2001)
Proceedings of the 2001 American Control Conference
, vol.6
, pp. 4734-4739
-
-
Fazel, M.1
Hindi, H.2
Boyd, S.3
-
17
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. J. Mach. Learn. Res., 2:243-264, 2001.
-
(2001)
J. Mach. Learn. Res
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
19
-
-
0002123103
-
Dependency networks for inference, collaborative filtering, and data visualization
-
D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency networks for inference, collaborative filtering, and data visualization. J. Mach. Learn. Res., 1:49-75, 2000.
-
(2000)
J. Mach. Learn. Res
, vol.1
, pp. 49-75
-
-
Heckerman, D.1
Chickering, D.M.2
Meek, C.3
Rounthwaite, R.4
Kadie, C.5
-
20
-
-
38849139819
-
Efficient peptide-MHC-I binding prediction for alleles with few known binders
-
Feb
-
L. Jacob and J.-R Vert. Efficient peptide-MHC-I binding prediction for alleles with few known binders. Bioinformatics, 24(3):358-366, Feb 2008.
-
(2008)
Bioinformatics
, vol.24
, Issue.3
, pp. 358-366
-
-
Jacob, L.1
Vert, J.-R.2
-
21
-
-
8844278523
-
-
G. R. G. Lanckriet, N. Cristianini, L. E1 Ghaoui, P. Bartlett, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res., 5:27-72, 2004.
-
G. R. G. Lanckriet, N. Cristianini, L. E1 Ghaoui, P. Bartlett, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res., 5:27-72, 2004.
-
-
-
-
22
-
-
0036057564
-
Twice differentiable spectral functions
-
A. S. Lewis and H. S. Sendov. Twice differentiable spectral functions. SIAM J. Mat. Anal. App., 23 (2):368-386, 2002.
-
(2002)
SIAM J. Mat. Anal. App
, vol.23
, Issue.2
, pp. 368-386
-
-
Lewis, A.S.1
Sendov, H.S.2
-
23
-
-
31844451557
-
Fast maximum margin matrix factorization for collaborative prediction
-
New York, NY, USA, ACM Press
-
J. D. M. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In Proceedings of the 22nd International Conference on Machine Learning, pages 713-719, New York, NY, USA, 2005. ACM Press.
-
(2005)
Proceedings of the 22nd International Conference on Machine Learning
, pp. 713-719
-
-
Rennie, J.D.M.1
Srebro, N.2
-
24
-
-
34547983260
-
Restricted boltzmann machines for collaborative filtering
-
New York, NY, USA, ACM
-
R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for collaborative filtering. In ICML '07: Proceedings of the 24th International Conference on Machine Learning, pages 791-798, New York, NY, USA, 2007. ACM.
-
(2007)
ICML '07: Proceedings of the 24th International Conference on Machine Learning
, pp. 791-798
-
-
Salakhutdinov, R.1
Mnih, A.2
Hinton, G.3
-
25
-
-
7544240447
-
A generalized representer theorem
-
Proceedings of the 14th Annual Conference on Computational Learning Theory, of, Berlin, Heidelberg, Springer
-
B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. In Proceedings of the 14th Annual Conference on Computational Learning Theory, volume 2011 of Lecture Notes in Computer Science, pages A16-A26, Berlin / Heidelberg, 2001. Springer.
-
(2001)
Lecture Notes in Computer Science
, vol.2011
-
-
Schölkopf, B.1
Herbrich, R.2
Smola, A.J.3
-
28
-
-
84898932317
-
Maximum-margin matrix factorization
-
L. K. Saul, Y Weiss, and L. Bottou, editors, Cambridge, MA, MIT Press
-
N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factorization. In L. K. Saul, Y Weiss, and L. Bottou, editors, Adv. Neural. Inform. Process Syst. 17, pages 1329-1336, Cambridge, MA, 2005. MIT Press.
-
(2005)
Adv. Neural. Inform. Process Syst. 17
, pp. 1329-1336
-
-
Srebro, N.1
Rennie, J.D.M.2
Jaakkola, T.S.3
|