메뉴 건너뛰기




Volumn 37, Issue 1, 2016, Pages 191-211

A label propagation method using spatial-spectral consistency for hyperspectral image classification

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE CLASSIFICATION; PIXELS; SPECTROSCOPY; SUPPORT VECTOR MACHINES;

EID: 84953265138     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2015.1125547     Document Type: Article
Times cited : (17)

References (44)
  • 1
    • 84872950801 scopus 로고    scopus 로고
    • A Graph-Based Classification Method for Hyperspectral Images
    • J.Bai,, S.Xiang, and C.Pan. 2013. “A Graph-Based Classification Method for Hyperspectral Images.” IEEE Transactions on Geoscience and Remote Sensing 51 (2): 803–817. doi:10.1109/TGRS.2012.2205002.
    • (2013) IEEE Transactions on Geoscience and Remote Sensing , vol.51 , Issue.2 , pp. 803-817
    • Bai, J.1    Xiang, S.2    Pan, C.3
  • 2
    • 14644412366 scopus 로고    scopus 로고
    • Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles
    • J.A.Benediktsson,, J.A.Palmason, and J.R.Sveinsson. 2005. “Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles.” IEEE Transactions on Geoscience and Remote Sensing 43 (3): 480–491. doi:10.1109/TGRS.2004.842478.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 3
    • 84859048363 scopus 로고    scopus 로고
    • Spectral–Spatial Classification of Hyperspectral Data Based on a Stochastic Minimum Spanning Forest Approach
    • K.Bernard,, Y.Tarabalka, J.Angulo, J.Chanussot, and J.A.Benediktsson. 2012. “Spectral–Spatial Classification of Hyperspectral Data Based on a Stochastic Minimum Spanning Forest Approach.” IEEE Transactions on Image Processing 21 (4): 2008–2021. doi:10.1109/TIP.2011.2175741.
    • (2012) IEEE Transactions on Image Processing , vol.21 , Issue.4 , pp. 2008-2021
    • Bernard, K.1    Tarabalka, Y.2    Angulo, J.3    Chanussot, J.4    Benediktsson, J.A.5
  • 5
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-Based Methods for Hyperspectral Image Classification
    • G.Camps-Valls,, and L.Bruzzone. 2005. “Kernel-Based Methods for Hyperspectral Image Classification.” IEEE Transactions on Geoscience and Remote Sensing 43 (6): 1351–1362. doi:10.1109/TGRS.2005.846154.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 9
    • 0034248782 scopus 로고    scopus 로고
    • An Information-Theoretic Approach to Spectral Variability, Similarity, and Discrimination for Hyperspectral Image Analysis
    • C.-I.Chang, 2000. “An Information-Theoretic Approach to Spectral Variability, Similarity, and Discrimination for Hyperspectral Image Analysis.” IEEE Transactions on Information Theory 46 (5): 1927–1932. doi:10.1109/18.857802.
    • (2000) IEEE Transactions on Information Theory , vol.46 , Issue.5 , pp. 1927-1932
    • Chang, C.-I.1
  • 10
    • 84953270860 scopus 로고    scopus 로고
    • Research on Denoising of hyperspectral imagery
    • Graduate University of Chinese Academy of Sciences
    • S.Chen,, 2012. “Research on Denoising of hyperspectral imagery.” Ph.D. Thesis, Graduate University of Chinese Academy of Sciences.
    • (2012) Ph.D. Thesis
    • Chen, S.1
  • 12
    • 31044447641 scopus 로고    scopus 로고
    • The Effectiveness of Spectral Similarity Measures for the Analysis of Hyperspectral Imagery
    • F.Der Meer, 2006. “The Effectiveness of Spectral Similarity Measures for the Analysis of Hyperspectral Imagery.” International Journal of Applied Earth Observation and Geoinformation 8 (1): 3–17. doi:10.1016/j.jag.2005.06.001.
    • (2006) International Journal of Applied Earth Observation and Geoinformation , vol.8 , Issue.1 , pp. 3-17
    • Der Meer, F.1
  • 13
    • 67649861039 scopus 로고    scopus 로고
    • Spectral and Spatial Methods for the Classification of Urban Remote Sensing Data
    • Grenoble Inst. thnol, Grenoble, France:
    • M.Fauvel,, 2007. “Spectral and Spatial Methods for the Classification of Urban Remote Sensing Data.” Ph.D.dissertation, Grenoble Inst. thnol., Grenoble, France.
    • (2007) Ph.D.dissertation
    • Fauvel, M.1
  • 14
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles
    • M.Fauvel,, J.A.Benediktsson, J.Chanussot, and J.R.Sveinsson. 2008. “Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles.” IEEE Transactions on Geoscience and Remote Sensing 46 (11): 3804–3814. doi:10.1109/TGRS.2008.922034.
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 16
    • 77957741951 scopus 로고
    • On the Mean Accuracy of Statistical Pattern Recognizers
    • G.F.Hughes, 1968. “On the Mean Accuracy of Statistical Pattern Recognizers.” IEEE Transactions on Information Theory 14 (1): 55–63. doi:10.1109/TIT.1968.1054102.
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 18
    • 64349105831 scopus 로고    scopus 로고
    • Managing the Spectral-Spatial Mix in Context Classification Using Markov Random Fields
    • X.Jia,, and J.A.Richards. 2008. “Managing the Spectral-Spatial Mix in Context Classification Using Markov Random Fields.” IEEE Geosci. Remote Sensing Lett 5 (2): 311–314. doi:10.1109/LGRS.2008.916076.
    • (2008) IEEE Geosci. Remote Sensing Lett , vol.5 , Issue.2 , pp. 311-314
    • Jia, X.1    Richards, J.A.2
  • 20
    • 0016882368 scopus 로고
    • Classification of Multispectral Image Data by Extraction and Classification of Homogeneous Objects
    • R.L.Kettig,, and D.A.Landgrebe. 1976. “Classification of Multispectral Image Data by Extraction and Classification of Homogeneous Objects.” IEEE Transactions on Geoscience Electronics 14 (1): 19–26. doi:10.1109/TGE.1976.294460.
    • (1976) IEEE Transactions on Geoscience Electronics , vol.14 , Issue.1 , pp. 19-26
    • Kettig, R.L.1    Landgrebe, D.A.2
  • 22
    • 33845571783 scopus 로고    scopus 로고
    • A Closed Form Solution to Natural Image Matting
    • A.Levin,, D.Lischinski, and Y.Weiss. 2006. “A Closed Form Solution to Natural Image Matting.” CVPR, New York, June 17–22, 61–68.
    • (2006) CVPR , pp. 61-68
    • Levin, A.1    Lischinski, D.2    Weiss, Y.3
  • 24
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral Image Segmentation Using a New Bayesian Approach with Active Learning
    • J.Li,, J.Bioucas-Dias, and A.Plaza. 2011. “Hyperspectral Image Segmentation Using a New Bayesian Approach with Active Learning.” IEEE Transactions onGeoscience and Remote Sensing 49 (10): 3947–3960. doi:10.1109/TGRS.2011.2128330.
    • (2011) IEEE Transactions onGeoscience and Remote Sensing , vol.49 , Issue.10 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 26
    • 4344614511 scopus 로고    scopus 로고
    • Classification of Hyperspectral Remote Sensing Images with Support Vector Machines
    • F.Melgani,, and L.Bruzzone. 2004. “Classification of Hyperspectral Remote Sensing Images with Support Vector Machines.” IEEE Transactions on Geoscience and Remote Sensing 42 (8): 1778–1790. doi:10.1109/TGRS.2004.831865.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 27
    • 0028464661 scopus 로고
    • Topographic Distance and Watershed Lines
    • F.Meyer, 1994. “Topographic Distance and Watershed Lines.” Signal Processing 38: 113–125. doi:10.1016/0165-1684(94)90060-4.
    • (1994) Signal Processing , vol.38 , pp. 113-125
    • Meyer, F.1
  • 29
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods
    • MIT Press
    • J.C.Platt, 1999. “Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods.” In Advances in Large Margin Classifiers, edited by A. J. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans, 61–74. MIT Press.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 32
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-Spatial Classification of Hyperspectral Image Based on Partitional Clustering Techniques
    • Y.Tarabalka,, J.A.Benediktsson, and J.Chanussot. 2009. “Spectral-Spatial Classification of Hyperspectral Image Based on Partitional Clustering Techniques.” IEEE Journal of Selected Topics in Signal Processing 47 (8): 2973–2987.
    • (2009) IEEE Journal of Selected Topics in Signal Processing , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 34
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and Classification of Hyperspectral Images Using Watershed Transformation
    • Y.Tarabalka,, J.Chanussot, and J.A.Benediktsson. 2010b. “Segmentation and Classification of Hyperspectral Images Using Watershed Transformation.” Pattern Recognition 43 (7): 2367–2379. doi:10.1016/j.patcog.2010.01.016.
    • (2010) Pattern Recognition , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 35
    • 77956694762 scopus 로고    scopus 로고
    • Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown from Automatically Selected Markers
    • Y.Tarabalka,, J.Chanussot, and J.A.Benediktsson. 2010c. “Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown from Automatically Selected Markers.” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 40 (5): 1267–1279. doi:10.1109/TSMCB.2009.2037132.
    • (2010) IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , vol.40 , Issue.5 , pp. 1267-1279
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 37
    • 51349159085 scopus 로고    scopus 로고
    • Probability Estimates for Multi-Class Classification by Pairwise Coupling
    • T.-F.Wu,, C.-J.Lin, and R.C.Weng. 2004. “Probability Estimates for Multi-Class Classification by Pairwise Coupling.” Journal of Machine Learning Research 5: 975–1005.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 975-1005
    • Wu, T.-F.1    Lin, C.-J.2    Weng, R.C.3
  • 38
    • 0033540293 scopus 로고    scopus 로고
    • A Back-Propagation Neural Network for Mineralogical Mapping from AVIRIS Data
    • H.Yang, 1999. “A Back-Propagation Neural Network for Mineralogical Mapping from AVIRIS Data.” International Journal ofRemote Sensing 20 (1): 97–110. doi:10.1080/014311699213622.
    • (1999) International Journal ofRemote Sensing , vol.20 , Issue.1 , pp. 97-110
    • Yang, H.1
  • 39
    • 77958582596 scopus 로고    scopus 로고
    • A Nonparametric Feature Extraction and Its Application to Nearest Neighbor Classification for Hyperspectral Image Data
    • J.-M.Yang,, P.-T.Yu, and B.-C.Kuo. 2010. “A Nonparametric Feature Extraction and Its Application to Nearest Neighbor Classification for Hyperspectral Image Data.” IEEE Transactions on Geoscience and Remote Sensing 48 (3): 1279–1293. doi:10.1109/TGRS.2009.2031812.
    • (2010) IEEE Transactions on Geoscience and Remote Sensing , vol.48 , Issue.3 , pp. 1279-1293
    • Yang, J.-M.1    Yu, P.-T.2    Kuo, B.-C.3
  • 41
    • 80052335044 scopus 로고    scopus 로고
    • Adaptive Markov Random Field Approach for Classification of Hyperspectral Imagery
    • B.Zhang,, S.Li, X.Jia, L.Gao, and M.Peng. 2011. “Adaptive Markov Random Field Approach for Classification of Hyperspectral Imagery.” IEEE Geoscience and Remote Sensing Letters 8 (5): 973–977. doi:10.1109/LGRS.2011.2145353.
    • (2011) IEEE Geoscience and Remote Sensing Letters , vol.8 , Issue.5 , pp. 973-977
    • Zhang, B.1    Li, S.2    Jia, X.3    Gao, L.4    Peng, M.5
  • 42
    • 80052087210 scopus 로고    scopus 로고
    • On Combining Multiple Features for Hyperspectral Remote Sensing Image Classification
    • L.Zhang,, L.Zhang, D.Tao, and X.Huang. 2012. “On Combining Multiple Features for Hyperspectral Remote Sensing Image Classification.” IEEE Transactions on Geoscience and Remote Sensing 50 (3): 879–893. doi:10.1109/TGRS.2011.2162339.
    • (2012) IEEE Transactions on Geoscience and Remote Sensing , vol.50 , Issue.3 , pp. 879-893
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 43
    • 84879514791 scopus 로고    scopus 로고
    • A Modified Stochastic Neighbor Embedding for Multi-Feature Dimension Reduction of Remote Sensing Images
    • L.Zhang,, L.Zhang, D.Tao, and X.Huang. 2013. “A Modified Stochastic Neighbor Embedding for Multi-Feature Dimension Reduction of Remote Sensing Images.” ISPRSJournal of Photogrammetry and Remote Sensing 83: 30–39. doi:10.1016/j.isprsjprs.2013.05.009.
    • (2013) ISPRSJournal of Photogrammetry and Remote Sensing , vol.83 , pp. 30-39
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.