메뉴 건너뛰기




Volumn 11, Issue 6, 2015, Pages

Automated High-Throughput Characterization of Single Neurons by Means of Simplified Spiking Models

Author keywords

[No Author keywords available]

Indexed keywords

ELECTROPHYSIOLOGY; NEURONS; THROUGHPUT;

EID: 84953224905     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1004275     Document Type: Article
Times cited : (72)

References (70)
  • 1
    • 42149193214 scopus 로고    scopus 로고
    • High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology
    • Dunlop J, Bowlby M, Peri R, Vasilyev D, Arias R, (2008) High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nature Reviews Drug Discovery 7: 358–368. doi: 10.1038/nrd2552 18356919
    • (2008) Nature Reviews Drug Discovery , vol.7 , pp. 358-368
    • Dunlop, J.1    Bowlby, M.2    Peri, R.3    Vasilyev, D.4    Arias, R.5
  • 3
    • 33747102760 scopus 로고    scopus 로고
    • Population patch clamp improves data consistency and success rates in the measurement of ionic currents
    • Finkel A, Wittel A, Yang N, Handran S, Hughes J, Costantin J, (2006) Population patch clamp improves data consistency and success rates in the measurement of ionic currents. Journal of Biomolecular Screening 11: 488–496. doi: 10.1177/1087057106288050 16760372
    • (2006) Journal of Biomolecular Screening , vol.11 , pp. 488-496
    • Finkel, A.1    Wittel, A.2    Yang, N.3    Handran, S.4    Hughes, J.5    Costantin, J.6
  • 5
    • 33749595018 scopus 로고    scopus 로고
    • Modeling single-neuron dynamics and computations: a balance of detail and abstraction
    • Herz AV, Gollisch T, Machens CK, Jaeger D, (2006) Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314: 80–85. doi: 10.1126/science.1127240 17023649
    • (2006) Science , vol.314 , pp. 80-85
    • Herz, A.V.1    Gollisch, T.2    Machens, C.K.3    Jaeger, D.4
  • 6
    • 70350130109 scopus 로고    scopus 로고
    • How good are neuron models?
    • Gerstner W, Naud R, (2009) How good are neuron models? Science 326: 379–380. doi: 10.1126/science.1181936 19833951
    • (2009) Science , vol.326 , pp. 379-380
    • Gerstner, W.1    Naud, R.2
  • 8
    • 31444442519 scopus 로고    scopus 로고
    • The blue brain project
    • Markram H, (2006) The blue brain project. Nature Reviews Neuroscience 7: 153–160. doi: 10.1038/nrn1848 16429124
    • (2006) Nature Reviews Neuroscience , vol.7 , pp. 153-160
    • Markram, H.1
  • 9
    • 80053180820 scopus 로고    scopus 로고
    • Simulation of signal flow in 3d reconstructions of an anatomically realistic neural network in rat vibrissal cortex
    • Lang S, Dercksen VJ, Sakmann B, Oberlaender M, (2011) Simulation of signal flow in 3d reconstructions of an anatomically realistic neural network in rat vibrissal cortex. Neural Networks 24: 998–1011. doi: 10.1016/j.neunet.2011.06.013 21775101
    • (2011) Neural Networks , vol.24 , pp. 998-1011
    • Lang, S.1    Dercksen, V.J.2    Sakmann, B.3    Oberlaender, M.4
  • 10
    • 0348012925 scopus 로고    scopus 로고
    • Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons
    • Prinz AA, Billimoria CP, Marder E, (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of Neurophysiology 90: 3998–4015. doi: 10.1152/jn.00641.2003 12944532
    • (2003) Journal of Neurophysiology , vol.90 , pp. 3998-4015
    • Prinz, A.A.1    Billimoria, C.P.2    Marder, E.3
  • 11
    • 33646174233 scopus 로고    scopus 로고
    • On the origin of the extracellular action potential waveform: a modeling study
    • Gold C, Henze DA, Koch C, Buzsáki G, (2006) On the origin of the extracellular action potential waveform: a modeling study. Journal of Neurophysiology 95: 3113–3128. doi: 10.1152/jn.00979.2005 16467426
    • (2006) Journal of Neurophysiology , vol.95 , pp. 3113-3128
    • Gold, C.1    Henze, D.A.2    Koch, C.3    Buzsáki, G.4
  • 12
    • 33746752672 scopus 로고    scopus 로고
    • Efficient estimation of detailed single-neuron models
    • Huys QJ, Ahrens MB, Paninski L, (2006) Efficient estimation of detailed single-neuron models. Journal of Neurophysiology 96: 872. doi: 10.1152/jn.00079.2006 16624998
    • (2006) Journal of Neurophysiology , vol.96 , pp. 872
    • Huys, Q.J.1    Ahrens, M.B.2    Paninski, L.3
  • 13
    • 85088891526 scopus 로고    scopus 로고
    • A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data
    • Druckmann S, Banitt Y, Gidon A, Schürmann F, Markram H, Segev I, (2007) A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in Neuroscience 1: 1. doi: 10.3389/neuro.01.1.1.001.2007
    • (2007) Frontiers in Neuroscience , vol.1 , pp. 1
    • Druckmann, S.1    Banitt, Y.2    Gidon, A.3    Schürmann, F.4    Markram, H.5    Segev, I.6
  • 14
    • 79960952525 scopus 로고    scopus 로고
    • Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties
    • Hay E, Hill S, Schürmann F, Markram H, Segev I, (2011) Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Computational Biology 7: e1002107. doi: 10.1371/journal.pcbi.1002107 21829333
    • (2011) PLoS Computational Biology , vol.7 , pp. e1002107
    • Hay, E.1    Hill, S.2    Schürmann, F.3    Markram, H.4    Segev, I.5
  • 15
    • 84861128339 scopus 로고    scopus 로고
    • A self-organizing state-space-model approach for parameter estimation in hodgkin-huxley-type models of single neurons
    • Vavoulis DV, Straub VA, Aston JA, Feng J, (2012) A self-organizing state-space-model approach for parameter estimation in hodgkin-huxley-type models of single neurons. PLoS Computational Biology 8: e1002401. doi: 10.1371/journal.pcbi.1002401 22396632
    • (2012) PLoS Computational Biology , vol.8 , pp. e1002401
    • Vavoulis, D.V.1    Straub, V.A.2    Aston, J.A.3    Feng, J.4
  • 18
    • 0027498486 scopus 로고
    • The highly irregular firing of cortical cells is inconsistent with temporal integration of random epsps
    • Softky WR, Koch C, (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random epsps. Journal of Neuroscience 13: 334–350. 8423479
    • (1993) Journal of Neuroscience , vol.13 , pp. 334-350
    • Softky, W.R.1    Koch, C.2
  • 19
    • 0031182938 scopus 로고    scopus 로고
    • Physiological gain leads to high isi variability in a simple model of a cortical regular spiking cell
    • Troyer TW, Miller KD, (1997) Physiological gain leads to high isi variability in a simple model of a cortical regular spiking cell. Neural Computation 9: 971–983. doi: 10.1162/neco.1997.9.5.971 9188190
    • (1997) Neural Computation , vol.9 , pp. 971-983
    • Troyer, T.W.1    Miller, K.D.2
  • 20
    • 0034972776 scopus 로고    scopus 로고
    • Predicting every spike: a model for the responses of visual neurons
    • Keat J, Reinagel P, Reid RC, Meister M, (2001) Predicting every spike: a model for the responses of visual neurons. Neuron 30: 803–817. doi: 10.1016/S0896-6273(01)00322-1 11430813
    • (2001) Neuron , vol.30 , pp. 803-817
    • Keat, J.1    Reinagel, P.2    Reid, R.C.3    Meister, M.4
  • 21
    • 28044458279 scopus 로고    scopus 로고
    • Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model
    • Pillow J, Paninski L, Uzzell VJ, Simoncelli EP, Chichilnisky E, (2005) Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience 25: 11003–11013. doi: 10.1523/JNEUROSCI.3305-05.2005 16306413
    • (2005) Journal of Neuroscience , vol.25 , pp. 11003-11013
    • Pillow, J.1    Paninski, L.2    Uzzell, V.J.3    Simoncelli, E.P.4    Chichilnisky, E.5
  • 22
    • 18144381247 scopus 로고    scopus 로고
    • Comparing integrate-and-fire models estimated using intracellular and extracellular data
    • Paninski L, Pillow J, Simoncelli E, (2005) Comparing integrate-and-fire models estimated using intracellular and extracellular data. Neurocomputing 65: 379–385. doi: 10.1016/j.neucom.2004.10.032
    • (2005) Neurocomputing , vol.65 , pp. 379-385
    • Paninski, L.1    Pillow, J.2    Simoncelli, E.3
  • 24
    • 77953482919 scopus 로고    scopus 로고
    • Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold
    • Kobayashi R, Tsubo Y, Shinomoto S, (2009) Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Frontiers in Computational Neuroscience 3: 9. doi: 10.3389/neuro.10.009.2009 19668702
    • (2009) Frontiers in Computational Neuroscience , vol.3 , pp. 9
    • Kobayashi, R.1    Tsubo, Y.2    Shinomoto, S.3
  • 26
    • 0034721728 scopus 로고    scopus 로고
    • Diversity and dynamics of dendritic signaling
    • Häusser M, Spruston N, Stuart GJ, (2000) Diversity and dynamics of dendritic signaling. Science 290: 739–744. doi: 10.1126/science.290.5492.739 11052929
    • (2000) Science , vol.290 , pp. 739-744
    • Häusser, M.1    Spruston, N.2    Stuart, G.J.3
  • 27
    • 68449085134 scopus 로고    scopus 로고
    • Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle
    • Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J, (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325: 756–760. doi: 10.1126/science.1171958 19661433
    • (2009) Science , vol.325 , pp. 756-760
    • Larkum, M.E.1    Nevian, T.2    Sandler, M.3    Polsky, A.4    Schiller, J.5
  • 29
    • 43949092150 scopus 로고    scopus 로고
    • Nest (neural simulation tool)
    • Gewaltig MO, Diesmann M, (2007) Nest (neural simulation tool). Scholarpedia 2: 1430. doi: 10.4249/scholarpedia.1430
    • (2007) Scholarpedia , vol.2 , pp. 1430
    • Gewaltig, M.O.1    Diesmann, M.2
  • 31
    • 84879686980 scopus 로고    scopus 로고
    • Temporal whitening by power-law adaptation in neocortical neurons
    • Pozzorini C, Naud R, Mensi S, Gerstner W, (2013) Temporal whitening by power-law adaptation in neocortical neurons. Nature Neuroscience 16: 942–948. doi: 10.1038/nn.3431 23749146
    • (2013) Nature Neuroscience , vol.16 , pp. 942-948
    • Pozzorini, C.1    Naud, R.2    Mensi, S.3    Gerstner, W.4
  • 32
    • 48749103873 scopus 로고    scopus 로고
    • High-resolution intracellular recordings using a real-time computational model of the electrode
    • Brette R, Piwkowska Z, Monier C, Rudolph-Lilith M, Fournier J, Levy M, et al. (2008) High-resolution intracellular recordings using a real-time computational model of the electrode. Neuron 59: 379–391. doi: 10.1016/j.neuron.2008.06.021 18701064
    • (2008) Neuron , vol.59 , pp. 379-391
    • Brette, R.1    Piwkowska, Z.2    Monier, C.3    Rudolph-Lilith, M.4    Fournier, J.5    Levy, M.6
  • 33
    • 39149096545 scopus 로고    scopus 로고
    • Dynamic IV curves are reliable predictors of naturalistic pyramidal-neuron voltage traces
    • Badel L, Lefort S, Brette R, Petersen CC, Gerstner W, Richardson M, (2008) Dynamic IV curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. Journal of Neurophysiology 99: 656–666. doi: 10.1152/jn.01107.2007 18057107
    • (2008) Journal of Neurophysiology , vol.99 , pp. 656-666
    • Badel, L.1    Lefort, S.2    Brette, R.3    Petersen, C.C.4    Gerstner, W.5    Richardson, M.6
  • 34
    • 84856394711 scopus 로고    scopus 로고
    • Improved similarity measures for small sets of spike trains
    • Naud R, Gerhard F, Mensi S, Gerstner W, (2011) Improved similarity measures for small sets of spike trains. Neural Computation 23: 3016–3069. doi: 10.1162/NECO_a_00208 21919785
    • (2011) Neural Computation , vol.23 , pp. 3016-3069
    • Naud, R.1    Gerhard, F.2    Mensi, S.3    Gerstner, W.4
  • 35
    • 12544253489 scopus 로고    scopus 로고
    • A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects
    • Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN, (2005) A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology 93: 1074–1089. doi: 10.1152/jn.00697.2004 15356183
    • (2005) Journal of Neurophysiology , vol.93 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.T.2    Fellows, M.R.3    Donoghue, J.P.4    Brown, E.N.5
  • 36
    • 50049100348 scopus 로고    scopus 로고
    • Spatio-temporal correlations and visual signalling in a complete neuronal population
    • Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, et al. (2008) Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454: 995–999. doi: 10.1038/nature07140 18650810
    • (2008) Nature , vol.454 , pp. 995-999
    • Pillow, J.W.1    Shlens, J.2    Paninski, L.3    Sher, A.4    Litke, A.M.5    Chichilnisky, E.J.6
  • 37
    • 84858320460 scopus 로고    scopus 로고
    • Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms
    • Mensi S, Naud R, Pozzorini C, Avermann M, Petersen CC, Gerstner W, (2012) Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. Journal of Neurophysiology 107: 1756–1775. doi: 10.1152/jn.00408.2011 22157113
    • (2012) Journal of Neurophysiology , vol.107 , pp. 1756-1775
    • Mensi, S.1    Naud, R.2    Pozzorini, C.3    Avermann, M.4    Petersen, C.C.5    Gerstner, W.6
  • 39
    • 33745833056 scopus 로고    scopus 로고
    • Predicting spike timing of neocortical pyramidal neurons by simple threshold models
    • Jolivet R, Rauch A, Lüscher HR, Gerstner W, (2006) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of Computational Neuroscience 21: 35–49. doi: 10.1007/s10827-006-7074-5 16633938
    • (2006) Journal of Computational Neuroscience , vol.21 , pp. 35-49
    • Jolivet, R.1    Rauch, A.2    Lüscher, H.R.3    Gerstner, W.4
  • 41
    • 9744274025 scopus 로고    scopus 로고
    • Maximum likelihood estimation of cascade point-process neural encoding models
    • Paninski L, (2004) Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems 15: 243–262. doi: 10.1088/0954-898X/15/4/002
    • (2004) Network: Computation in Neural Systems , vol.15 , pp. 243-262
    • Paninski, L.1
  • 42
    • 0029030249 scopus 로고
    • Reliability of spike timing in neocortical neurons
    • Mainen ZF, Sejnowski TJ, (1995) Reliability of spike timing in neocortical neurons. Science 268: 1503–1506. doi: 10.1126/science.7770778 7770778
    • (1995) Science , vol.268 , pp. 1503-1506
    • Mainen, Z.F.1    Sejnowski, T.J.2
  • 43
    • 84984772459 scopus 로고    scopus 로고
    • Fractional differentiation by neocortical pyramidal neurons
    • Lundstrom BN, Higgs MH, Spain WJ, Fairhall AL, (2008) Fractional differentiation by neocortical pyramidal neurons. Nature Neuroscience 11: 1335–1342. doi: 10.1038/nn.2212 18931665
    • (2008) Nature Neuroscience , vol.11 , pp. 1335-1342
    • Lundstrom, B.N.1    Higgs, M.H.2    Spain, W.J.3    Fairhall, A.L.4
  • 44
    • 0033053130 scopus 로고    scopus 로고
    • Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo
    • Destexhe A, Paré D, (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology 81: 1531–1547. 10200189
    • (1999) Journal of Neurophysiology , vol.81 , pp. 1531-1547
    • Destexhe, A.1    Paré, D.2
  • 45
    • 0033667243 scopus 로고    scopus 로고
    • The role of single neurons in information processing
    • Koch C, Segev I, (2000) The role of single neurons in information processing. Nature Neuroscience 3: 1171–1177. doi: 10.1038/81444 11127834
    • (2000) Nature Neuroscience , vol.3 , pp. 1171-1177
    • Koch, C.1    Segev, I.2
  • 46
    • 23244457444 scopus 로고    scopus 로고
    • Dendritic computation
    • London M, Häusser M, (2005) Dendritic computation. Annual Review of Neuroscience 28: 503–532. doi: 10.1146/annurev.neuro.28.061604.135703 16033324
    • (2005) Annual Review of Neuroscience , vol.28 , pp. 503-532
    • London, M.1    Häusser, M.2
  • 49
    • 0029670122 scopus 로고    scopus 로고
    • +currents in neurones: types, physiological roles and modulation
    • Sah P, (1996) Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. Trends in Neurosciences 19: 150–154. doi: 10.1016/S0166-2236(96)80026-9 8658599
    • (1996) Trends in Neurosciences , vol.19 , pp. 150-154
    • Sah, P.1
  • 51
    • 0034608932 scopus 로고    scopus 로고
    • Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo
    • Azouz R, Gray CM, (2000) Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proceedings of the National Academy of Sciences 97: 8110–8115. doi: 10.1073/pnas.130200797
    • (2000) Proceedings of the National Academy of Sciences , vol.97 , pp. 8110-8115
    • Azouz, R.1    Gray, C.M.2
  • 52
    • 0037421715 scopus 로고    scopus 로고
    • Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo
    • Azouz R, Gray CM, (2003) Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo. Neuron 37: 513–523. doi: 10.1016/S0896-6273(02)01186-8 12575957
    • (2003) Neuron , vol.37 , pp. 513-523
    • Azouz, R.1    Gray, C.M.2
  • 54
    • 77957267964 scopus 로고    scopus 로고
    • Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content
    • Padmanabhan K, Urban NN, (2010) Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. Nature Neuroscience 13: 1276–1282. doi: 10.1038/nn.2630 20802489
    • (2010) Nature Neuroscience , vol.13 , pp. 1276-1282
    • Padmanabhan, K.1    Urban, N.N.2
  • 57
    • 77649152514 scopus 로고    scopus 로고
    • Connectivity reflects coding: a model of voltage-based stdp with homeostasis
    • Clopath C, Büsing L, Vasilaki E, Gerstner W, (2010) Connectivity reflects coding: a model of voltage-based stdp with homeostasis. Nature Neuroscience 13: 344–352. doi: 10.1038/nn.2479 20098420
    • (2010) Nature Neuroscience , vol.13 , pp. 344-352
    • Clopath, C.1    Büsing, L.2    Vasilaki, E.3    Gerstner, W.4
  • 58
    • 63249097213 scopus 로고    scopus 로고
    • A generalized linear integrate-and-fire neural model produces diverse spiking behaviors
    • Mihalaş Ş, Niebur E, (2009) A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural Computation 21: 704–718. doi: 10.1162/neco.2008.12-07-680 18928368
    • (2009) Neural Computation , vol.21 , pp. 704-718
    • Mihalaş, M.1    Niebur, E.2
  • 59
    • 78049262157 scopus 로고    scopus 로고
    • A threshold equation for action potential initiation
    • Platkiewicz J, Brette R, (2010) A threshold equation for action potential initiation. PLoS Computational Biology 6: e1000850. doi: 10.1371/journal.pcbi.1000850 20628619
    • (2010) PLoS Computational Biology , vol.6 , pp. e1000850
    • Platkiewicz, J.1    Brette, R.2
  • 60
    • 80054975686 scopus 로고    scopus 로고
    • Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones
    • Higgs MH, Spain WJ, (2011) Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones. The Journal of Physiology 589: 5125–5142. doi: 10.1113/jphysiol.2011.216721 21911608
    • (2011) The Journal of Physiology , vol.589 , pp. 5125-5142
    • Higgs, M.H.1    Spain, W.J.2
  • 61
    • 27144498986 scopus 로고    scopus 로고
    • Adaptive exponential integrate-and-fire model as an effective description of neuronal activity
    • Brette R, Gerstner W, (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology 94: 3637–3642. doi: 10.1152/jn.00686.2005 16014787
    • (2005) Journal of Neurophysiology , vol.94 , pp. 3637-3642
    • Brette, R.1    Gerstner, W.2
  • 63
    • 56449095252 scopus 로고    scopus 로고
    • Firing patterns in the adaptive exponential integrate-and-fire model
    • Naud R, Marcille N, Clopath C, Gerstner W, (2008) Firing patterns in the adaptive exponential integrate-and-fire model. Biological Cybernetics 99: 335–347. doi: 10.1007/s00422-008-0264-7 19011922
    • (2008) Biological Cybernetics , vol.99 , pp. 335-347
    • Naud, R.1    Marcille, N.2    Clopath, C.3    Gerstner, W.4
  • 64
    • 56449131028 scopus 로고    scopus 로고
    • Dynamics and bifurcations of the adaptive exponential integrate-and-fire model
    • Touboul J, Brette R, (2008) Dynamics and bifurcations of the adaptive exponential integrate-and-fire model. Biological Cybernetics 99: 319–334. doi: 10.1007/s00422-008-0267-4 19011921
    • (2008) Biological Cybernetics , vol.99 , pp. 319-334
    • Touboul, J.1    Brette, R.2
  • 65
    • 84858763471 scopus 로고    scopus 로고
    • Neuroscience: Observatories of the mind
    • Koch C, Reid RC, (2012) Neuroscience: Observatories of the mind. Nature 483: 397–398. doi: 10.1038/483397a 22437592
    • (2012) Nature , vol.483 , pp. 397-398
    • Koch, C.1    Reid, R.C.2
  • 66
    • 84857402818 scopus 로고    scopus 로고
    • Computer modelling: Brain in a box
    • Waldrop MM, (2012) Computer modelling: Brain in a box. Nature 482: 456–458. doi: 10.1038/482456a 22358809
    • (2012) Nature , vol.482 , pp. 456-458
    • Waldrop, M.M.1
  • 69
    • 0023686914 scopus 로고
    • Maximum likelihood analysis of spike trains of interacting nerve cells
    • Brillinger DR, (1988) Maximum likelihood analysis of spike trains of interacting nerve cells. Biological Cybernetics 59: 189–200. doi: 10.1007/BF00318010 3179344
    • (1988) Biological Cybernetics , vol.59 , pp. 189-200
    • Brillinger, D.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.