메뉴 건너뛰기




Volumn 99, Issue 4-5, 2008, Pages 417-426

The quantitative single-neuron modeling competition

Author keywords

Benchmark testing; Integrate and fire model; Quantitative predictions; Scientific competition

Indexed keywords

COMPETITION; KETONES; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 56449105170     PISSN: 03401200     EISSN: 14320770     Source Type: Journal    
DOI: 10.1007/s00422-008-0261-x     Document Type: Article
Times cited : (99)

References (56)
  • 1
    • 33746614853 scopus 로고    scopus 로고
    • Complex parameter landscape for a complex neuron model
    • 7
    • P Achard E De Schutter 2006 Complex parameter landscape for a complex neuron model PLoS Comp Biol 2 7 e94
    • (2006) PLoS Comp Biol , vol.2 , pp. 94
    • Achard, P.1    De Schutter, E.2
  • 2
    • 0042178302 scopus 로고    scopus 로고
    • What causes a neuron to spike
    • B Arcas A Fairhall 2003 What causes a neuron to spike Neural Comp 15 1789 1807
    • (2003) Neural Comp , vol.15 , pp. 1789-1807
    • Arcas, B.1    Fairhall, A.2
  • 3
    • 42749102736 scopus 로고    scopus 로고
    • Non-euclidean properties of spike train metric spaces
    • D Aronov JD Victor 2004 Non-euclidean properties of spike train metric spaces Phys Rev E 69 061,905
    • (2004) Phys Rev e , vol.69 , pp. 061
    • Aronov, D.1    Victor, J.D.2
  • 7
    • 0023686914 scopus 로고
    • Maximum likelihood analysis of spike trains of interacting nerve cells
    • DR Brillinger 1988 Maximum likelihood analysis of spike trains of interacting nerve cells Biol Cybern 59 189 200
    • (1988) Biol Cybern , vol.59 , pp. 189-200
    • Brillinger, D.R.1
  • 8
    • 0023926904 scopus 로고
    • The maximum likelihood approach to the identification of neuronal firing systems
    • DR Brillinger 1988 The maximum likelihood approach to the identification of neuronal firing systems Ann Biomed Eng 16 3 16
    • (1988) Ann Biomed Eng , vol.16 , pp. 3-16
    • Brillinger, D.R.1
  • 9
    • 0018597073 scopus 로고
    • Empirical examination of the threshold model of neuronal firing
    • DR Brillinger JP Segundo 1979 Empirical examination of the threshold model of neuronal firing Biol Cybern 35 213 220
    • (1979) Biol Cybern , vol.35 , pp. 213-220
    • Brillinger, D.R.1    Segundo, J.P.2
  • 10
    • 42749100584 scopus 로고    scopus 로고
    • Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance
    • N Brunel V Hakim MJE Richardson 2003 Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance Phys Rev E 67 051,916
    • (2003) Phys Rev e , vol.67 , pp. 051
    • Brunel, N.1    Hakim, V.2    Richardson, M.J.E.3
  • 11
    • 27744527338 scopus 로고    scopus 로고
    • Optimizing conductance parameters of cortical neural models via electrotonic partitions
    • 5-6
    • K Bush J Knight C Anderson 2005 Optimizing conductance parameters of cortical neural models via electrotonic partitions Neural Net 18 5-6 488 496
    • (2005) Neural Net , vol.18 , pp. 488-496
    • Bush, K.1    Knight, J.2    Anderson, C.3
  • 12
    • 37549038604 scopus 로고    scopus 로고
    • Thalamic filtering of retinal spike trains by postsynaptic summation
    • 14
    • M Carandini JC Horton LC Sincich 2007 Thalamic filtering of retinal spike trains by postsynaptic summation J Vision 7 14 20
    • (2007) J Vision , vol.7 , pp. 20
    • Carandini, M.1    Horton, J.C.2    Sincich, L.C.3
  • 13
    • 34247491502 scopus 로고    scopus 로고
    • Predicting neuronal activity with simple models of the threshold type: Adaptive Exponential Integrate-and-Fire model with two compartments
    • 10-12
    • C Clopath R Jolivet A Rauch HR Lüscher W Gerstner 2007 Predicting neuronal activity with simple models of the threshold type: Adaptive Exponential Integrate-and-Fire model with two compartments Neurocomputing 70 10-12 1668 1673
    • (2007) Neurocomputing , vol.70 , pp. 1668-1673
    • Clopath, C.1    Jolivet, R.2    Rauch, A.3    Lüscher, H.R.4    Gerstner, W.5
  • 14
    • 85088891526 scopus 로고    scopus 로고
    • A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data
    • S Druckmann Y Banitt A Gidon F Schürmann H Markram I Segev 2007 A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data Front Neurosci 1 7 18
    • (2007) Front Neurosci , vol.1 , pp. 7-18
    • Druckmann, S.1    Banitt, Y.2    Gidon, A.3    Schürmann, F.4    Markram, H.5    Segev, I.6
  • 15
    • 0347694858 scopus 로고    scopus 로고
    • How spike generation mechanisms determine the neuronal response to fluctuating inputs
    • N Fourcaud-Trocmé D Hansel C van Vreeswijk N Brunel 2003 How spike generation mechanisms determine the neuronal response to fluctuating inputs J Neurosci 23 11,628 11,640
    • (2003) J Neurosci , vol.23 , pp. 11
    • Fourcaud-Trocmé, N.1    Hansel, D.2    Van Vreeswijk, C.3    Brunel, N.4
  • 16
    • 0025902125 scopus 로고
    • Discrimination performance of single neurons: Rate and temporal information
    • WS Geisler DG Albrecht RJ Salvi SS Saunders 1991 Discrimination performance of single neurons: rate and temporal information J Neurophysiol 66 334 362
    • (1991) J Neurophysiol , vol.66 , pp. 334-362
    • Geisler, W.S.1    Albrecht, D.G.2    Salvi, R.J.3    Saunders, S.S.4
  • 17
    • 33646112635 scopus 로고    scopus 로고
    • Genetic algorithm for optimization and specification of a neuron model
    • 10-12
    • WC Gerken LK Purvis RJ Butera 2006 Genetic algorithm for optimization and specification of a neuron model Neurocomputing 69 10-12 1039 1042
    • (2006) Neurocomputing , vol.69 , pp. 1039-1042
    • Gerken, W.C.1    Purvis, L.K.2    Butera, R.J.3
  • 19
    • 0029821128 scopus 로고    scopus 로고
    • A neuronal learning rule for sub-millisecond temporal coding
    • W Gerstner R Kempter JL van Hemmen H Wagner 1996 A neuronal learning rule for sub-millisecond temporal coding Nature 383 76 78
    • (1996) Nature , vol.383 , pp. 76-78
    • Gerstner, W.1    Kempter, R.2    Van Hemmen, J.L.3    Wagner, H.4
  • 20
    • 35649001607 scopus 로고
    • A quantitative description of membrane current and its application to conduction and excitation in nerve
    • AL Hodgkin AF Huxley 1952 A quantitative description of membrane current and its application to conduction and excitation in nerve J Physiol (London) 117 500 544
    • (1952) J Physiol (London) , vol.117 , pp. 500-544
    • Hodgkin, A.L.1    Huxley, A.F.2
  • 21
    • 0029637779 scopus 로고
    • Pattern recognition computation using action potential timing for stimulus representation
    • JJ Hopfield 1995 Pattern recognition computation using action potential timing for stimulus representation Nature 376 33 36
    • (1995) Nature , vol.376 , pp. 33-36
    • Hopfield, J.J.1
  • 22
    • 33746752672 scopus 로고    scopus 로고
    • Efficient estimation of detailed single-neuron models
    • QJM Huys MB Ahrens L Paninski 2006 Efficient estimation of detailed single-neuron models J Neurophysiol 96 872 890
    • (2006) J Neurophysiol , vol.96 , pp. 872-890
    • Huys, Q.J.M.1    Ahrens, M.B.2    Paninski, L.3
  • 23
    • 4344661328 scopus 로고    scopus 로고
    • Which model to use for cortical spiking neurons
    • EM Izhikevich 2004 Which model to use for cortical spiking neurons IEEE Trans Neural Net 15 1063 1070
    • (2004) IEEE Trans Neural Net , vol.15 , pp. 1063-1070
    • Izhikevich, E.M.1
  • 24
    • 42149192537 scopus 로고    scopus 로고
    • Large-scale model of mammalian thalamocortical systems
    • 9
    • EM Izhikevich GM Edelman 2008 Large-scale model of mammalian thalamocortical systems PNAS 105 9 3593 3598
    • (2008) PNAS , vol.105 , pp. 3593-3598
    • Izhikevich, E.M.1    Edelman, G.M.2
  • 25
    • 28644433470 scopus 로고    scopus 로고
    • Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival
    • 4-6
    • R Jolivet W Gerstner 2004 Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival J Physiol-Paris 98 4-6 442 451
    • (2004) J Physiol-Paris , vol.98 , pp. 442-451
    • Jolivet, R.1    Gerstner, W.2
  • 26
    • 3142666109 scopus 로고    scopus 로고
    • Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy
    • 2
    • R Jolivet TJ Lewis W Gerstner 2004 Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy J Neurophysiol 92 2 959 976
    • (2004) J Neurophysiol , vol.92 , pp. 959-976
    • Jolivet, R.1    Lewis, T.J.2    Gerstner, W.3
  • 27
    • 84864032280 scopus 로고    scopus 로고
    • Integrate-and-Fire models with adaptation are good enough: Predicting spike times under random current injection
    • R Jolivet A Rauch HR Lüscher W Gerstner 2006 Integrate-and-Fire models with adaptation are good enough: predicting spike times under random current injection Adv Neural Inform Process Syst 18 595 602
    • (2006) Adv Neural Inform Process Syst , vol.18 , pp. 595-602
    • Jolivet, R.1    Rauch, A.2    Lüscher, H.R.3    Gerstner, W.4
  • 28
    • 33745833056 scopus 로고    scopus 로고
    • Predicting spike timing of neocortical pyramidal neurons by simple threshold models
    • 1
    • R Jolivet A Rauch HR Lüscher W Gerstner 2006 Predicting spike timing of neocortical pyramidal neurons by simple threshold models J Comput Neurosci 21 1 35 49
    • (2006) J Comput Neurosci , vol.21 , pp. 35-49
    • Jolivet, R.1    Rauch, A.2    Lüscher, H.R.3    Gerstner, W.4
  • 30
    • 0034972776 scopus 로고    scopus 로고
    • Predicting every spike: A model for the responses of visual neurons
    • J Keat P Reinagel RC Reid M Meister 2001 Predicting every spike: a model for the responses of visual neurons Neuron 30 803 817
    • (2001) Neuron , vol.30 , pp. 803-817
    • Keat, J.1    Reinagel, P.2    Reid, R.C.3    Meister, M.4
  • 31
    • 0032533068 scopus 로고    scopus 로고
    • Extracting oscillations: Neuronal coincidence detection with noisy periodic spike input
    • R Kempter W Gerstner JL van Hemmen H Wagner 1998 Extracting oscillations: neuronal coincidence detection with noisy periodic spike input Neural Comp 10 1987 2017
    • (1998) Neural Comp , vol.10 , pp. 1987-2017
    • Kempter, R.1    Gerstner, W.2    Van Hemmen, J.L.3    Wagner, H.4
  • 32
    • 28044461220 scopus 로고    scopus 로고
    • Constraining compartmental models using multiple voltage recordings and genetic algorithms
    • 6
    • N Keren N Peled A Korngreen 2005 Constraining compartmental models using multiple voltage recordings and genetic algorithms J Neurophysiol 94 6 3730 3742
    • (2005) J Neurophysiol , vol.94 , pp. 3730-3742
    • Keren, N.1    Peled, N.2    Korngreen, A.3
  • 33
    • 0000706722 scopus 로고    scopus 로고
    • Reduction of Hodgkin-Huxley equations to a single-variable threshold model
    • WM Kistler W Gerstner JL van Hemmen 1997 Reduction of Hodgkin-Huxley equations to a single-variable threshold model Neural Comp 9 1015 1045
    • (1997) Neural Comp , vol.9 , pp. 1015-1045
    • Kistler, W.M.1    Gerstner, W.2    Van Hemmen, J.L.3
  • 34
    • 33846650165 scopus 로고    scopus 로고
    • State space method for predicting the spike times of a neuron
    • 1
    • R Kobayashi S Shinomoto 2007 State space method for predicting the spike times of a neuron Phys Rev E 75 1 11,925
    • (2007) Phys Rev e , vol.75 , pp. 11
    • Kobayashi, R.1    Shinomoto, S.2
  • 35
    • 4344670177 scopus 로고    scopus 로고
    • Minimal models of adapted neuronal response to in vivo-like input currents
    • G La Camera A Rauch HR Lüscher W Senn S Fusi 2004 Minimal models of adapted neuronal response to in vivo-like input currents Neural Comp 16 2101 2124
    • (2004) Neural Comp , vol.16 , pp. 2101-2124
    • La Camera, G.1    Rauch, A.2    Lüscher, H.R.3    Senn, W.4    Fusi, S.5
  • 36
    • 33747272940 scopus 로고    scopus 로고
    • The parameters of the stochastic leaky integrate-and-fire neuronal model
    • 2
    • P Lansky P Sanda J He 2006 The parameters of the stochastic leaky integrate-and-fire neuronal model J Comput Neurosci 21 2 211 223
    • (2006) J Comput Neurosci , vol.21 , pp. 211-223
    • Lansky, P.1    Sanda, P.2    He, J.3
  • 37
    • 0033602368 scopus 로고    scopus 로고
    • A new cellular mechanism for coupling inputs arriving at different cortical layers
    • 6725
    • ME Larkum JJ Zhu B Sakmann 1999 A new cellular mechanism for coupling inputs arriving at different cortical layers Nature 398 6725 338 341
    • (1999) Nature , vol.398 , pp. 338-341
    • Larkum, M.E.1    Zhu, J.J.2    Sakmann, B.3
  • 38
    • 4544222913 scopus 로고    scopus 로고
    • Top-down dendritic input increases the gain of layer 5 pyramidal neurons
    • ME Larkum W Senn HR Lüscher 2004 Top-down dendritic input increases the gain of layer 5 pyramidal neurons Cereb Cortex 14 1059 1070
    • (2004) Cereb Cortex , vol.14 , pp. 1059-1070
    • Larkum, M.E.1    Senn, W.2    Lüscher, H.R.3
  • 40
    • 0032531819 scopus 로고    scopus 로고
    • Who reads temporal information contained across synchronized and oscillatory spike trains
    • K MacLeod A Backer G Laurent 1998 Who reads temporal information contained across synchronized and oscillatory spike trains Nature 395 693 698
    • (1998) Nature , vol.395 , pp. 693-698
    • MacLeod, K.1    Backer, A.2    Laurent, G.3
  • 41
    • 31444442519 scopus 로고    scopus 로고
    • The blue brain project
    • 2
    • H Markram 2006 The blue brain project Nat Rev Neurosci 7 2 153 160
    • (2006) Nat Rev Neurosci , vol.7 , pp. 153-160
    • Markram, H.1
  • 42
    • 22144491834 scopus 로고    scopus 로고
    • General methodology for nonlinear modeling of neural systems with Poisson point-process inputs
    • 1
    • VZ Marmarelis TW Berger 2005 General methodology for nonlinear modeling of neural systems with Poisson point-process inputs Math Biosci 196 1 1 13
    • (2005) Math Biosci , vol.196 , pp. 1-13
    • Marmarelis, V.Z.1    Berger, T.W.2
  • 43
    • 41249095433 scopus 로고    scopus 로고
    • Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data
    • P Mullowney S Iyengar 2008 Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data J Comput Neurosci 24 179 194
    • (2008) J Comput Neurosci , vol.24 , pp. 179-194
    • Mullowney, P.1    Iyengar, S.2
  • 44
    • 18144381247 scopus 로고    scopus 로고
    • Comparing integrate-and-fire models estimated using intracellular and extracellular data
    • 66
    • L Paninski JW Pillow EP Simoncelli 2005 Comparing integrate-and-fire models estimated using intracellular and extracellular data Neurocomputing 65 66 379 385
    • (2005) Neurocomputing , vol.65 , pp. 379-385
    • Paninski, L.1    Pillow, J.W.2    Simoncelli, E.P.3
  • 45
    • 28044458279 scopus 로고    scopus 로고
    • Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model
    • 47
    • JW Pillow L Paninski VJ Uzzell EP Simoncelli EJ Chichilnisky 2005 Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model J Neurosci 25 47 11,003 11,013
    • (2005) J Neurosci , vol.25 , pp. 11
    • Pillow, J.W.1    Paninski, L.2    Uzzell, V.J.3    Simoncelli, E.P.4    Chichilnisky, E.J.5
  • 46
    • 0348012925 scopus 로고    scopus 로고
    • Alternative to hand-tuning conductance-based models: Construction and analysis of databases of model neurons
    • 6
    • AA Prinz CP Billimoria E Marder 2003 Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons J Neurophysiol 90 6 3998 4015
    • (2003) J Neurophysiol , vol.90 , pp. 3998-4015
    • Prinz, A.A.1    Billimoria, C.P.2    Marder, E.3
  • 47
    • 13744259954 scopus 로고    scopus 로고
    • Similar network activity from disparate circuit parameters
    • 12
    • AA Prinz D Bucher E Marder 2004 Similar network activity from disparate circuit parameters Nat Neurosci 7 12 1345 1352
    • (2004) Nat Neurosci , vol.7 , pp. 1345-1352
    • Prinz, A.A.1    Bucher, D.2    Marder, E.3
  • 48
    • 0141565240 scopus 로고    scopus 로고
    • Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents
    • A Rauch G La Camera HR Lüscher W Senn S Fusi 2003 Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents J Neurophysiol 90 1598 1612
    • (2003) J Neurophysiol , vol.90 , pp. 1598-1612
    • Rauch, A.1    La Camera, G.2    Lüscher, H.R.3    Senn, W.4    Fusi, S.5
  • 49
    • 0035319165 scopus 로고    scopus 로고
    • A novel spike distance
    • MCW van Rossum 2001 A novel spike distance Neural Comp 13 751 763
    • (2001) Neural Comp , vol.13 , pp. 751-763
    • Van Rossum, M.C.W.1
  • 50
    • 0037567639 scopus 로고    scopus 로고
    • Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern
    • 6
    • AT Schaefer ME Larkum B Sakmann A Roth 2003 Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern J Neurophysiol 89 6 3143 3154
    • (2003) J Neurophysiol , vol.89 , pp. 3143-3154
    • Schaefer, A.T.1    Larkum, M.E.2    Sakmann, B.3    Roth, A.4
  • 52
    • 0032875742 scopus 로고    scopus 로고
    • A comparative survey of automated parameter-search methods for compartmental neural models
    • 2
    • MC Vanier JM Bower 1999 A comparative survey of automated parameter-search methods for compartmental neural models J Comput Neurosci 7 2 149 171
    • (1999) J Comput Neurosci , vol.7 , pp. 149-171
    • Vanier, M.C.1    Bower, J.M.2
  • 53
    • 0029791918 scopus 로고    scopus 로고
    • Nature and precision of temporal coding in visual cortex: A metric-space analysis
    • JD Victor KP Purpura 1996 Nature and precision of temporal coding in visual cortex: a metric-space analysis J Neurophysiol 76 1310 1326
    • (1996) J Neurophysiol , vol.76 , pp. 1310-1326
    • Victor, J.D.1    Purpura, K.P.2
  • 54
    • 0001175897 scopus 로고    scopus 로고
    • Metric-space analysis of spike trains: Theory, algorithms and application
    • JD Victor KP Purpura 1997 Metric-space analysis of spike trains: theory, algorithms and application Netw Comp Neural Syst 8 127 164
    • (1997) Netw Comp Neural Syst , vol.8 , pp. 127-164
    • Victor, J.D.1    Purpura, K.P.2
  • 55
    • 0036126135 scopus 로고    scopus 로고
    • Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex
    • Y Wang A Gupta M Toledo-Rodriguez CZ Wu H Markram 2002 Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex Cereb Cortex 12 395 410
    • (2002) Cereb Cortex , vol.12 , pp. 395-410
    • Wang, Y.1    Gupta, A.2    Toledo-Rodriguez, M.3    Wu, C.Z.4    Markram, H.5
  • 56
    • 33646119859 scopus 로고    scopus 로고
    • The role of action potential shape and parameter constraints in optimization of compartment models
    • 10-12
    • CM Weaver SL Wearne 2006 The role of action potential shape and parameter constraints in optimization of compartment models Neurocomputing 69 10-12 1053 1057
    • (2006) Neurocomputing , vol.69 , pp. 1053-1057
    • Weaver, C.M.1    Wearne, S.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.