메뉴 건너뛰기




Volumn 1, Issue , 2014, Pages 144-154

Tagging the web: Building a robust web tagger with neural network

Author keywords

[No Author keywords available]

Indexed keywords

SYNTACTICS;

EID: 84906923166     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/p14-1014     Document Type: Conference Paper
Times cited : (23)

References (33)
  • 2
    • 84864073449 scopus 로고    scopus 로고
    • Greedy layer-wise training of deep networks
    • B. Schölkopf, J. Platt, and T. Hoffman, editors, MIT Press, Cambridge, MA
    • Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. 2007. Greedy layer-wise training of deep networks. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 153-160. MIT Press, Cambridge, MA.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 153-160
    • Bengio, Y.1    Lamblin, P.2    Popovici, D.3    Larochelle, H.4
  • 3
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for ai
    • Also published as a book. Now Publishers, 2009
    • Yoshua Bengio. 2009. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1):1-127. Also published as a book. Now Publishers, 2009.
    • (2009) Foundations and Trends in Machine Learning , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 4
    • 34547994328 scopus 로고    scopus 로고
    • Discriminative learning for differing training and test distributions
    • ACM Press
    • Steffen Bickel, Michael Brckner, and Tobias Scheffer. 2007. Discriminative learning for differing training and test distributions. In Proc of ICML 2007, pages 81-88. ACM Press.
    • (2007) Proc of ICML 2007 , pp. 81-88
    • Bickel, S.1    Brckner, M.2    Scheffer, T.3
  • 6
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms
    • Stroudsburg, PA, USA. Association for Computational Linguistics
    • Michael Collins. 2002. Discriminative training methods for hidden markov models: theory and experiments with perceptron algorithms. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing - Volume 10, EMNLP '02, pages 1-8, Stroudsburg, PA, USA. Association for Computational Linguistics.
    • (2002) Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing-Volume 10, EMNLP '02 , pp. 1-8
    • Collins, M.1
  • 9
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for large-scale sentiment classification: A deep learning approach
    • Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Domain adaptation for large-scale sentiment classification: A deep learning approach. In Proc of ICML 2011, pages 513-520.
    • (2011) Proc of ICML 2011 , pp. 513-520
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 11
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • July
    • Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A fast learning algorithm for deep belief nets. Neural Comput., 18(7):1527-1554, July.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 12
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • August
    • Geoffrey E. Hinton. 2002. Training products of experts by minimizing contrastive divergence. Neural Comput., 14(8):1771-1800, August.
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 13
    • 84860538689 scopus 로고    scopus 로고
    • Instance weighting for domain adaptation in nlp
    • Prague, Czech Republic, June. Association for Computational Linguistics
    • Jing Jiang and ChengXiang Zhai. 2007. Instance weighting for domain adaptation in nlp. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 264-271, Prague, Czech Republic, June. Association for Computational Linguistics.
    • (2007) Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics , pp. 264-271
    • Jiang, J.1    Zhai, C.2
  • 15
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. 2009a. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proc of ICML 2009, pages 609-616.
    • (2009) Proc of ICML 2009 , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 16
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
    • Honglak Lee, Peter Pham, Yan Largman, and Andrew Ng. 2009b. Unsupervised feature learning for audio classification using convolutional deep belief networks. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1096-1104.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1096-1104
    • Lee, H.1    Pham, P.2    Largman, Y.3    Ng, A.4
  • 21
    • 76649142894 scopus 로고    scopus 로고
    • Structural correspondence learning for parse disambiguation
    • Alex Lascarides, Claire Gardent, and Joakim Nivre, editors, The Association for Computer Linguistics
    • Barbara Plank. 2009. Structural correspondence learning for parse disambiguation. In Alex Lascarides, Claire Gardent, and Joakim Nivre, editors, EACL (Student ResearchWorkshop), pages 37-45. The Association for Computer Linguistics.
    • (2009) EACL (Student ResearchWorkshop) , pp. 37-45
    • Plank, B.1
  • 22
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • B. Schölkopf, J. Platt, and T. Hoffman, editors, MIT Press, Cambridge, MA
    • Marc'Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun. 2007. Efficient learning of sparse representations with an energy-based model. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 1137-1144. MIT Press, Cambridge, MA.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 1137-1144
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    Lecun, Y.4
  • 25
    • 38049120269 scopus 로고    scopus 로고
    • Domain adaptation of conditional probability models via feature subsetting
    • Springer
    • Sandeepkumar Satpal and Sunita Sarawagi. 2007. Domain adaptation of conditional probability models via feature subsetting. In PKDD, volume 4702 of Lecture Notes in Computer Science, pages 224-235. Springer.
    • (2007) PKDD, Volume 4702 of Lecture Notes in Computer Science , pp. 224-235
    • Satpal, S.1    Sarawagi, S.2
  • 26
    • 84860520429 scopus 로고    scopus 로고
    • Guided learning for bidirectional sequence classification
    • Prague, Czech Republic, June. Association for Computational Linguistics
    • Libin Shen, Giorgio Satta, and Aravind Joshi. 2007. Guided learning for bidirectional sequence classification. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 760-767, Prague, Czech Republic, June. Association for Computational Linguistics.
    • (2007) Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics , pp. 760-767
    • Shen, L.1    Satta, G.2    Joshi, A.3
  • 28
    • 84859057454 scopus 로고    scopus 로고
    • Domain adaptation by constraining inter-domain variability of latent feature representation
    • Portland, Oregon, USA, June. Association for Computational Linguistics
    • Ivan Titov. 2011. Domain adaptation by constraining inter-domain variability of latent feature representation. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 62-71, Portland, Oregon, USA, June. Association for Computational Linguistics.
    • (2011) Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies , pp. 62-71
    • Titov, I.1
  • 29
    • 80053495924 scopus 로고    scopus 로고
    • Word representations: A simple and general method for semi-supervised learning
    • Uppsala, Sweden, July. Association for Computational Linguistics
    • Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio. 2010. Word representations: A simple and general method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 384-394, Uppsala, Sweden, July. Association for Computational Linguistics.
    • (2010) Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics , pp. 384-394
    • Turian, J.1    Ratinov, L.2    Bengio, Y.3
  • 32
    • 80053228872 scopus 로고    scopus 로고
    • Syntax-based grammaticality improvement using ccg and guided search
    • Edinburgh, Scotland, UK., July. Association for Computational Linguistics
    • Yue Zhang and Stephen Clark. 2011. Syntax-based grammaticality improvement using ccg and guided search. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 1147-1157, Edinburgh, Scotland, UK., July. Association for Computational Linguistics.
    • (2011) Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing , pp. 1147-1157
    • Zhang, Y.1    Clark, S.2
  • 33
    • 84905255871 scopus 로고    scopus 로고
    • Deep learning for chinese word segmentation and pos tagging
    • Seattle, Washington, USA, October. Association for Computational Linguistics
    • Xiaoqing Zheng, Hanyang Chen, and Tianyu Xu. 2013. Deep learning for Chinese word segmentation and POS tagging. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 647-657, Seattle, Washington, USA, October. Association for Computational Linguistics.
    • (2013) Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing , pp. 647-657
    • Zheng, X.1    Chen, H.2    Xu, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.