메뉴 건너뛰기




Volumn 9385, Issue , 2015, Pages 72-83

Modeling concept drift: A probabilistic graphical model based approach

Author keywords

[No Author keywords available]

Indexed keywords

DATA HANDLING; GRAPHIC METHODS; INFORMATION ANALYSIS;

EID: 84951985454     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-24465-5_7     Document Type: Conference Paper
Times cited : (21)

References (17)
  • 3
    • 0010012318 scopus 로고
    • Incremental learning from noisy data
    • Schlimmer, J.C., Granger, R.H.: Incremental learning from noisy data. Mach. Learn. 1, 317–354 (1986)
    • (1986) Mach. Learn , vol.1 , pp. 317-354
    • Schlimmer, J.C.1    Granger, R.H.2
  • 4
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)
    • (1996) Mach. Learn , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 8
    • 84883365248 scopus 로고    scopus 로고
    • A classification-based approach to monitoring the safety of dynamic systems
    • Zhong, S., Langseth, H., Nielsen, T.D.: A classification-based approach to monitoring the safety of dynamic systems. Reliab. Eng. Syst. Safety 121, 61–71 (2014)
    • (2014) Reliab. Eng. Syst. Safety , vol.121 , pp. 61-71
    • Zhong, S.1    Langseth, H.2    Nielsen, T.D.3
  • 10
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models. Mach
    • Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Mach. Learn. 37, 183–233 (1999)
    • (1999) Learn , vol.37 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 13
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks. Artif. Intell. 42, 393–405 (1990)
    • (1990) Artif. Intell , vol.42 , pp. 393-405
    • Cooper, G.F.1
  • 14
    • 3543081155 scopus 로고    scopus 로고
    • Variational algorithms for approximate Bayesian inference
    • University College London
    • Beal, M.J.: Variational algorithms for approximate Bayesian inference. Ph.D. thesis, Gatsby Computational Neuroscience Unit, University College London (2003)
    • (2003) Ph.D. Thesis, Gatsby Computational Neuroscience Unit
    • Beal, M.J.1
  • 15


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.