-
1
-
-
0003684449
-
-
Springer New York Inc., New York
-
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer New York Inc., New York (2001)
-
(2001)
The Elements of Statistical Learning
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
2
-
-
77950692291
-
A survey of classification methods in data streams
-
In: Aggarwal, C.C. (ed.), Springer, Berlin
-
Gaber, M.M., Zaslavsky, A.B., Krishnaswamy, S.: A survey of classification methods in data streams. In: Aggarwal, C.C. (ed.) Data Streams-Models and Algorithms. Advances in Database Systems, vol. 31, pp. 39–59. Springer, Berlin (2007)
-
(2007)
Data Streams-Models and Algorithms. Advances in Database Systems
, vol.31
, pp. 39-59
-
-
Gaber, M.M.1
Zaslavsky, A.B.2
Krishnaswamy, S.3
-
3
-
-
0010012318
-
Incremental learning from noisy data
-
Schlimmer, J.C., Granger, R.H.: Incremental learning from noisy data. Mach. Learn. 1, 317–354 (1986)
-
(1986)
Mach. Learn
, vol.1
, pp. 317-354
-
-
Schlimmer, J.C.1
Granger, R.H.2
-
4
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)
-
(1996)
Mach. Learn
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
-
5
-
-
84901228061
-
A survey on concept drift adaptation
-
Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46, 44:1–44:37 (2014)
-
(2014)
ACM Comput. Surv
, vol.46
, pp. 1-44
-
-
Gama, J.1
Žliobaitė, I.2
Bifet, A.3
Pechenizkiy, M.4
Bouchachia, A.5
-
8
-
-
84883365248
-
A classification-based approach to monitoring the safety of dynamic systems
-
Zhong, S., Langseth, H., Nielsen, T.D.: A classification-based approach to monitoring the safety of dynamic systems. Reliab. Eng. Syst. Safety 121, 61–71 (2014)
-
(2014)
Reliab. Eng. Syst. Safety
, vol.121
, pp. 61-71
-
-
Zhong, S.1
Langseth, H.2
Nielsen, T.D.3
-
10
-
-
0033225865
-
An introduction to variational methods for graphical models. Mach
-
Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Mach. Learn. 37, 183–233 (1999)
-
(1999)
Learn
, vol.37
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
11
-
-
77953527363
-
MOA: Massive online analysis
-
Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010)
-
(2010)
J. Mach. Learn. Res
, vol.11
, pp. 1601-1604
-
-
Bifet, A.1
Holmes, G.2
Kirkby, R.3
Pfahringer, B.4
-
13
-
-
0025401005
-
The computational complexity of probabilistic inference using Bayesian belief networks
-
Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks. Artif. Intell. 42, 393–405 (1990)
-
(1990)
Artif. Intell
, vol.42
, pp. 393-405
-
-
Cooper, G.F.1
-
14
-
-
3543081155
-
Variational algorithms for approximate Bayesian inference
-
University College London
-
Beal, M.J.: Variational algorithms for approximate Bayesian inference. Ph.D. thesis, Gatsby Computational Neuroscience Unit, University College London (2003)
-
(2003)
Ph.D. Thesis, Gatsby Computational Neuroscience Unit
-
-
Beal, M.J.1
-
17
-
-
0035789299
-
Mining time changing data streams
-
Hulten, G., Spencer, L., Domingos, P.: Mining time changing data streams. In: Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining, pp. 97–106 (2001)
-
(2001)
Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining
, pp. 97-106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
|